Modular measuring or testing device

Optics: measuring and testing – For optical fiber or waveguide inspection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06801307

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention concerns a modular, portable device to measure or test components in optical or electrical networks.
Discussion of the Background Art
Such devices are used to test and measure the performance or function of a component in an optical or electrical network, i.e. a data network with optical or electrical data transmission. In order to ensure mobile use of this devices, they must be of a portable size, meaning that the devices must have small dimensions and low weight.
A conventional device, such as the Agilent E6000-Series from Agilent Technologies, has a base module containing base electronics with a programmed, or programmable, computer and storage medium. On the front side of the base module are controls, e.g. keys and buttons, as well as a display device in the form of an LCD display. On the back of the base module is a receptor shaft, which acts as a receptor for the function module. Such a function module contains a functional unit with measuring or testing electronics, which work together with the base electronics of the base module when the function module is attached. The function module may contain a laser, for example, which is used to generate measurement or test signals.
In order to carry out various measurement and test procedures, various function modules are provided, which are interchangeable and are each individually inserted into the receptor shaft. The various function modules may be fitted with lasers, for example, which vary in wavelength and capacity. When an optical cable is to be measured with several different wavelengths, for example, it may be necessary for the function modules to be inserted in succession into the receptor shaft. Due to the size of the receptor shaft on the base module, the dimensions of the function module are predetermined. Given the thus limited space available, there is reduced variability for the modular device.
SUMMARY OF THE INVENTION
The problem of the present invention is to develop an improved embodiment for the modular device as initially described. This problem will be solved by the characteristics of the independent claims. Advantageous embodiments are stated in the dependent claims.
The invention is based on the concept of attaching the function modules to the outside of the back of the base model, wherein appropriate mechanical and functional interfaces, i.e. electrical or optical, are provided. Through this, the function modules can be designed freely with respect to their size such that essentially any functional units maybe used as no predetermined or restricted clearance needs to be allowed for. Accordingly, the function units, which cannot be inserted into the receptor shaft of a conventional device due to their size, but can be easily attached to the base module of the device according to the invention, can thus be used. The variability of the device according to the invention is thus increased. Furthermore, certain function modules may be built relatively flat, thus reducing the size of the device and improving the ease of handling. Whereas the largest function module in a conventional device determines the size of the receptor shaft and hence the base module, the dimensions of the device according to the invention are variable and are reflected in the function module attached to the respective base module.
In one advantageous embodiment, a mechanical interface may also be attached to the back of the function module, into the back of which a further function module containing another functional unit may be attached. The latter works together with the functional unit of the first function module, or with the base electronics of the base module, through a functional interface. The base module can thus be simultaneously fitted with two or more function modules, which are each at least linked to the base module, and preferably to each other. This coupling or link can be made such that the functional interfaces (electrical or optical) in the function modules are connected through in the form of a bus. When a measurement or test procedure must be carried out, in which two different function modules would have to be exchanged in a conventional device, no complicated modification is necessary in the device according to the invention, as both necessary function modules are attached to the base module ready for use.
An embodiment is effective if the mechanical interface between the function module and base module, as well as the mechanical interface between two function modules, are essentially set up identical or compatible. The different function modules may thus be attached to the base module, or to each other, in any sequence, thus increasing the variability of the modular device.


REFERENCES:
patent: 5517015 (1996-05-01), Curry et al.
patent: 6062478 (2000-05-01), Izaguirre et al.
patent: 6517777 (2003-02-01), Liljestrand et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modular measuring or testing device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modular measuring or testing device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular measuring or testing device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3279794

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.