Fluid sprinkling – spraying – and diffusing – Including valve means in flow line – Reciprocating
Reexamination Certificate
2001-04-09
2004-01-13
Hwu, Davis D. (Department: 3752)
Fluid sprinkling, spraying, and diffusing
Including valve means in flow line
Reciprocating
C239S585300, C239S585400, C239S585500
Reexamination Certificate
active
06676044
ABSTRACT:
BACKGROUND OF THE INVENTION
It is believed that examples of known fuel injection systems use an injector to dispense a quantity of fuel that is to be combusted in an internal combustion engine. It is also believed that the quantity of fuel that is dispensed is varied in accordance with a number of engine parameters such as engine speed, engine load, engine emissions, etc.
It is believed that examples of known electronic fuel injection systems monitor at least one of the engine parameters and electrically operate the injector to dispense the fuel. It is believed that examples of known injectors use electromagnetic coils, piezoelectric elements, or magnetostrictive materials to actuate a valve.
It is believed that examples of known valves for injectors include a closure member that is movable with respect to a seat. Fuel flow through the injector is believed to be prohibited when the closure member sealingly contacts the seat, and fuel flow through the injector is believed to be permitted when the closure member is separated from the seat.
It is believed that examples of known injectors include a spring providing a force biasing the closure member toward the seat. It is also believed that this biasing force is adjustable in order to set the dynamic properties of the closure member movement with respect to the seat.
It is further believed that examples of known injectors include a filter for separating particles from the fuel flow, and include a seal at a connection of the injector to a fuel source.
It is believed that such examples of the known injectors have a number of disadvantages.
It is believed that examples of known injectors must be assembled entirely in an environment that is substantially free of contaminants. It is also believed that examples of known injectors can only be tested after final assembly has been completed.
SUMMARY OF THE INVENTION
According to the present invention, a fuel injector can comprise a plurality of modules, each of which can be independently assembled and tested. According to one embodiment of the present invention, the modules can comprise a fluid handling subassembly and an electrical subassembly. These subassemblies can be subsequently assembled to provide a fuel injector according to the present invention.
The present invention provides a fuel injector for use with an internal combustion engine. The fuel injector comprises a valve group subassembly and a coil group subassembly. The valve group subassembly includes a tube assembly having a longitudinal axis extending between a first end and a second end, the tube assembly including an inlet tube having an inlet tube face; a seat secured at the second end of the tube assembly, the seat defining an opening. An armature assembly disposed within the tube assembly, the armature assembly having a closure member disposed at one end of the armature assembly and an armature portion disposed at the other end of the armature assembly, the armature assembly having an armature face; a member biasing the armature assembly toward the seat. A filter assembly disposed within the tube assembly; an adjusting tube disposed within the tube assembly proximate the second end; a non-magnetic shell extending axially along the axis and coupled at one end of the shell to the inlet tube. A valve body coupled to the other end of the non-magnetic shell. A lift setting device disposed within the valve body. A valve seat disposed within the valve body and contiguously engaging the closure member; and a first attaching portion. The coil group subassembly includes a housing, a bobbin disposed partially within the housing, the bobbin having at least one contact portion formed thereon; a solenoid coil operable to displace the armature assembly with respect to the seat, the solenoid coil being electrically coupled to the contact terminals. At least one pre-bent terminal being electrically coupled to the contact portion; at least one overmold; and a second attaching portion fixedly connected to the first attaching portion.
The present invention also provides for a method of assembling a fuel injector. The method comprises providing a valve group subassembly and a coil group subassembly, inserting the valve group subassembly into the coil group subassembly, aligning the valve group subassembly relative to the coil group subassembly and affixing the two subassemblies. The valve group subassembly includes a tube assembly having a longitudinal axis extending between a first end and a second end, the tube assembly including an inlet tube having an inlet tube face; a seat secured at the second end of the tube assembly, the seat defining an opening; an armature assembly disposed within the tube assembly, the armature assembly having a closure member disposed at one end of the armature assembly and an armature portion disposed at the other end of the armature assembly, the armature assembly having an armature face; a member biasing the armature assembly toward the seat; a filter assembly disposed within the tube assembly; an adjusting tube disposed within the tube assembly proximate the second end; a non-magnetic shell extending axially along the axis and coupled at one end of the shell to the inlet tube; a valve body coupled to the other end of the non-magnetic shell; a lift setting device disposed within the valve body; a valve seat disposed within the valve body and contiguously engaging the closure member; and a first attaching portion. The coil group subassembly includes a housing; a bobbin disposed partially within the housing, the bobbin having at least one contact portion formed thereon; a solenoid coil operable to displace the armature assembly with respect to the seat, the solenoid coil being electrically coupled to the contact terminals; at least one pre-bent terminal electrically coupled to the contact portion; and at least one overmold.
The present invention also provides yet another method of assembling a modular fuel injector. The method comprises providing a valve group subassembly and a coil group subassembly, inserting the valve group subassembly into the coil group subassembly, aligning the valve group subassembly relative to the coil group subassembly and affixing the two subassemblies. The valve group subassembly includes a tube assembly having a longitudinal axis extending between a first end and a second end, the tube assembly including an inlet tube having an inlet tube face; a seat secured at the second end of the tube assembly, the seat defining an opening; an armature assembly disposed within the tube assembly, the armature assembly having a closure member disposed at one end of the armature assembly and an armature portion disposed at the other end of the armature assembly, the armature assembly having an armature face; a member biasing the armature assembly toward the seat; a filter assembly disposed within the tube assembly; an adjusting tube disposed within the tube assembly proximate the second end; a non-magnetic shell extending axially along the axis and coupled at one end of the shell to the inlet tube; a valve body coupled to the other end of the non-magnetic shell; a lift setting device disposed within the valve body; a valve seat disposed within the valve body and contiguously engaging the closure member; and a first attaching portion. The coil group subassembly includes a housing; a bobbin disposed partially within the housing, the bobbin having at least one contact portion formed thereon; a solenoid coil operable to displace the armature assembly with respect to the seat, the solenoid coil being electrically coupled to the contact terminals; at least one pre-bent terminal electrically coupled to the contact portion; and at least one overmold. The providing of the coil group or the power group further includes providing a clean room, fabricating the valve group in the clean room that comprises between 52 to 62 percent of a predetermined number of operations to assemble a ready-to-be shipped modular fuel injector, testing at least one of the valve group subassembly and coil group subassembly that
Bulgatz Dennis
Dallmeyer Michael P.
Hall Bryan
Hornby Michael J.
McFarland Robert
Hwu Davis D.
Siemens Automotive Corporation
LandOfFree
Modular fuel injector and method of assembling the modular... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modular fuel injector and method of assembling the modular..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular fuel injector and method of assembling the modular... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3264553