Land vehicles: bodies and tops – Bodies – Structural detail
Reexamination Certificate
2002-10-16
2004-06-29
Morrow, Jason (Department: 3612)
Land vehicles: bodies and tops
Bodies
Structural detail
C296S193090, C296S203020
Reexamination Certificate
active
06755461
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to motor vehicles, such as passenger cars and light trucks. More particularly, the present invention relates generally to a multi-component front end for a motor vehicle, which advances the methods by which motor vehicles are assembled.
2. Description of Related Art
Currently, the front ends of most motor vehicles are built into the vehicle body one piece or component at a time. The installation of literally hundreds of different components in the motor vehicle front end requires the manufacturer to maintain lengthy, complex, and costly assembly lines as well as extensive tooling and fixtures. This complexity is due not only to the high number of parts involved, but also the assembly methods currently used in the automotive industry and the amount of on-line adjusting and repair that is often needed to correct assembly defects. Additionally, the well-known assembly line process is highly labor intensive, again due mainly to the high number of parts and assembly methods currently used in the automotive industry.
Typically, once a painted vehicle body comes to the finish assembly line, hundreds of individual components are assembled to the vehicle body. The numerous individual components are used to complete the suspension system, steering and braking system, power train, cooling system, electrical system, etc. As stated, the individual components comprising these systems are typically added to the vehicle body one-by-one or in small subgroups to finish the assembly of the motor vehicle.
The large number of components required to assemble a motor vehicle requires the assembly line to be extremely long and requires many people to accomplish numerous discreet tasks along the assembly line. This makes the process of motor vehicle assembly unnecessarily slow and complicated and adversely affects the quality and reliability of the motor vehicle when it is completed. Additionally, the confined space within which the workers operate makes on-line service and repair tasks difficult and even dangerous. The overall complexity of the current system for assembling motor vehicles is unnecessarily slow and expensive and there is considerable room for improvement.
SUMMARY OF THE INVENTION
The present invention applies the general concept of using modules or assemblies in the manufacturing of motor vehicles. The concepts and embodiments disclosed hereinafter may be applied to other industries that utilize the long-standing assembly line technique for producing finished products, such as the aircraft, agricultural machinery, truck manufacturing, and mining vehicle industries. Generally, the present invention is a motor vehicle comprising a vehicle body having a pre-assembled, modular front end. The modular front end is comprised of several sub-modules or sub-assemblies, as discussed hereinafter.
The modular front end is based on the concept of “functionally decoupling” the several sub-modules or sub-assemblies from each other. In front end assembly techniques currently practiced in the art, the various elements or components of the front end are substantially interconnected or related. In contrast, the modular front end of the present invention has the various sub-assemblies comprising the front end substantially functionally isolated from one another. The separate functions of the sub-assemblies, which will be discussed hereinafter, are substantially independent from one another allowing any one sub-module or sub-assembly to be individually replaced without affecting the other sub-modules or sub-assemblies. This allows the sub-modules or sub-assemblies to be comprised of smaller and lighter individual components or parts, which is not easily possible in the “inter-related” front end structures generally found in the prior art. The use of separate and distinct sub-modules or sub-assemblies in the modular front end allows the overall size of the modular front end to be reduced because the sub-assemblies may be compact tightly within the modular front end. The smaller front end made possible by the modular front end of the present invention improves the overall driving and handling characteristics of the motor vehicle. For example, the smaller front end is lower in profile than those currently known in the art, which improves the driver's view of the road and aids the driver in performing routine vehicle operations such as parking, turning, etc.
Generally, the modular front end comprises a bulkhead having a plurality of preferably integrally formed attachment mounts, a drive train assembly attached to the bulkhead at the attachment mounts, a crash energy absorption assembly attached to the bulkhead at the attachment mounts and, further, an apron assembly attached to the bulkhead assembly at the attachment mounts. The apron assembly may be at least partially supported in the vertical direction by the crash energy absorption assembly. The drive train assembly, crash energy absorption assembly, and apron assembly are each preferably attached mechanically to the bulkhead.
The bulkhead is preferably a cast bulkhead comprising a plurality of integrally formed attachment mounts. The bulkhead may be cast from aluminum alloy as a unitary body. The bulkhead may also be comprised of a plurality of individually cast components. The bulkhead may be provided as part of a bulkhead assembly. The bulkhead assembly may comprise a cast bulkhead defining a plurality of integrally formed attachment mounts and at least one structural member of the motor vehicle attached to the bulkhead. The bulkhead assembly may further include one or more electrical components attached to the bulkhead.
The bulkhead may define at least one hollow cavity formed therein for increasing strength and rigidity of the bulkhead. The at least one hollow cavity may be filled with a cast-in-place core, preferably an aluminum foam core. The hollow cavity may also be filled with polymeric foam. The at least one structural member may comprise a pair of door hinge pillars attached to attachment mounts located at opposite ends of the bulkhead. The at least one structural member may also comprise a pair of rocker panels attached to a bottom end of the bulkhead opposite the door hinge pillars. Additionally, the at least one structural member may comprise a pair of windshield support pillars attached to a top end of the bulkhead. The at least one structural member may further comprise a windshield cross member attached to the top end of the bulkhead between the windshield support pillars.
The bulkhead may comprise a first side for facing an engine compartment of the motor vehicle and a second side for facing a passenger compartment of the motor vehicle. A pair of hood hinges, which may each include a hood lift assist mechanism, may be attached to attachment mounts located on the first side of the bulkhead for supporting a hood of the motor vehicle. The electrical component(s) is preferably attached to the first side of the bulkhead, but may be attached to the second side facing the passenger compartment. The electrical component(s) may include, for example, a windshield wiper motor and/or an electrical junction box.
The drive train assembly generally comprises a drive train support and a power train assembly attached to the drive train support. The drive train support comprises a pair of elongated support members that are configured for attachment, preferably by mechanical means, to a bulkhead of the motor vehicle. By mechanical attachment or means, it is meant that mechanical fasteners, such as nuts and bolts, rivets, and the like are preferably used to attach the various elements described in this disclosure, and may include rubber isolation mounts (i.e., bushings), where necessary, to minimize vibration between elements. The drive train support further comprises a cross member interconnecting the support members. The support members are further configured to support the power train assembly such that the power train assembly is cantilevered from the sup
Cobes John W.
Murphy Thomas J.
Pinegar Kevin R.
Seksaria Dinesh C.
Summe Todd L.
Aloca Inc.
Coffield Grant E.
Eckert Seamans Cherin & Mellott , LLC
Morrow Jason
Topolosky Gary P.
LandOfFree
Modular front end for a motor vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modular front end for a motor vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular front end for a motor vehicle will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3307542