Modular filter for molten metal

Specialized metallurgical processes – compositions for use therei – Processes – Producing or treating free metal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C075S412000, C266S227000, C266S236000, C210S232000, C210S323200, C210S455000, C210S510100, C210S496000, C210S497010

Reexamination Certificate

active

06231639

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates generally to the field of molten metal casting and to the field of filtration. Specifically, the invention relates to a filtering device for molten metal.
Wrought aluminum castings are used to produce high-grade stock for use in cans, as foil, litho sheets, memory disc substrates and aircraft components, for example. The casting process typically involves providing metal in a molten state using a furnace. The molten metal is then ultimately delivered to a casting mold or a secondary receiver for holding the molten metal at an elevated temperature for later casting.
It is desirable to remove any impurities or inclusions that may have been introduced into the molten metal at some stage during the casting process. Although sedimentation and flotation methods, which capitalize on the density differences between the molten metal and impurities, have been used, it is well recognized that filtration techniques are much more efficient than those methods.
Molten metal filtration is usually accomplished using filter elements formed of a porous refractory material. The molten metal is directed through the filter elements such that impurities are removed. Typically, inclusions that are above 5 microns in dimension are filtered from the molten metal in high-grade applications. Filtration can be performed by flowing molten metal through a filter box, which houses a filter assembly in such a way that the assembly may be removed and replaced as it becomes contaminated with the removed impurities. Similarly, in a trough filtration system, a plate filter is positioned as a type of trap in the trough. Molten metal, therefore, passes through the plate as gravity flows it through the trough.
Much attention has been given to the design of filter assemblies used in casting processes. It is desirable to minimize the footprint “floor space,” and volume occupied by the filter assembly in order to provide sufficient casting space. On the other hand, it is desirable to maximize the filter surface area in order to minimize the velocity of molten metal through the filter itself. An optimized design must balance the factors of footprint, total flow and velocity through the filter. Because filters must be periodically replaced, their cost is a significant factor that affects the feasibility of using a particular filter construction. Of equal importance is the down-time of a casting line required when a filter must be replaced. Obviously, productivity can be increased by decreasing filter change time. There have thus been efforts to provide relatively low-cost filtering devices which achieve a requisite throughput while occupying as little space as possible.
It is known to provide a filter assembly in the form of a cartridge filter unit that is constructed of a plurality of tubular filter elements adhesively bonded between end plates. Such a cartridge is described in U.S. Pat. No. 5,126,047, the subject matter of which is incorporated herein by reference. The cartridge comprises a plurality of generally horizontally oriented cylindrical tubes that are connected at their ends to a pair of spaced, generally parallel, ceramic refractory end plates. One end plate is provided with holes that are in fluid communication with the hollow interiors of the tubes. The other end plate abuts the closed ends of the tubes. In use, the filter cartridge is disposed within a filter box into which molten metal flows. The molten metal is filtered as it travels from the exterior of the tubes to the interior of the tubes. The filtered molten metal then flows through the tube interior and through the holes in the end plate to the outlet of the filter box. An advantage of a cartridge filter over a plate filter is that a cartridge filter provides a greater surface area within the same size footprint as a two-dimensional plate filter.
While such a filter cartridge construction offers superior filtration capabilities as compared to other filter constructions, its high cost may make it uneconomical. One of the primary reasons for the high cost associated with such prior art filter cartridges relate to their unitary construction. Specifically, the filter cartridge must be replaced as a single unit because filter elements are permanently bonded to the end plates using a refractory cement.
More importantly, this construction also results in considerable down-time during filter changes, since the entire cartridge must be preheated before use, typically requiring up to 24 hours for a cartridge with a large number of filter tubes. Another disadvantage is that the filter cartridge is generally a bulky structure which is difficult to lift and which must be carefully installed, often requiring significant manpower. To this end, holes are usually provided in the end plate to permit lifting equipment to attach to the end plate.
SUMMARY OF THE INVENTION
The present invention solves the aforementioned and other problems in the prior art by providing a modular construction for a filter cartridge in which the filter elements are adapted to be removably mounted to an end plate which is provided in the filter box or trough. The term “modular” as used herein refers to the capability for the separate interchange of parts that comprise an assembly. The term “removably mounted” refers to the ability of one component to be connected to or engaged with another such that the components can be later separated while remaining intact thereafter. According to one aspect of the invention, the filter elements are adapted to be removably mounted to the end plate, which may itself be removably mounted within the filter well. According to an alternative aspect of the invention, the filter elements are formed as tubular elements having an elliptical cross-section as opposed to a circular cross-section.
The modular construction of the filter cartridge according to the present invention provides the advantage of reducing the overall cost of using the filter cartridge since the end plate need not be replaced each time the filter is replaced. This construction also provides the advantage of reducing pre-heating times, since the filter elements may be pre-heated separately and outside of the filter box before filter replacement occurs. Filter replacement is simple since the individual filter elements may be handled, removed, and installed separately. Because the end plate may remain in the filter box while the filter elements are removed, the production delay associated with pre-heating the end plate is eliminated. Furthermore, since each tube is individually seated and sealed, the complex task of assuring simultaneous seating of several tubes on the large surface area of an end plate is avoided. Similarly, it will be recognized that a tool or structural design of the base of the filter box can enable the proper register of multiple tube.
The elliptical construction of filter elements according to the present invention provides improved priming characteristics associated with the filter well because the elliptical construction provides more area in a given horizontal plane, thereby reducing the pressure differential in the vertical direction within the filter element. This results in increased flow through the filter element at a given elevation within the filter well as compared to a filter element having a circular cross-section.


REFERENCES:
patent: 3747765 (1973-07-01), Nowak
patent: 4024056 (1977-05-01), Yarwood et al.
patent: 4081371 (1978-03-01), Yarwood et al.
patent: 4401295 (1983-08-01), Yoshida
patent: 4964993 (1990-10-01), Stankiewicz
patent: 5126047 (1992-06-01), Martin et al.
patent: 1 294 742 (1970-03-01), None
patent: 0407831 (1992-03-01), None
patent: 04311538 (1992-11-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modular filter for molten metal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modular filter for molten metal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular filter for molten metal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2488753

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.