Electrical transmission or interconnection systems – Conductor arrangements or structure
Reexamination Certificate
2000-01-24
2002-05-21
Ballato, Josie (Department: 2836)
Electrical transmission or interconnection systems
Conductor arrangements or structure
C439S532000, C439S716000
Reexamination Certificate
active
06392319
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to an electrical apparatus having a modular structure for the control or monitoring of technical processes or for industrial or building automation with at least one connection module that can be mounted on a carrier rail. The apparatus is provided with several levels of connection for connection with external conductors and includes a row of disk-shaped base terminal carriers. Within each connection module and parallel to the carrier rail, an internal bus conductor and several electrical potential supplies are arranged. The electrical potential supplies are connected via bus bars of the disk-shaped base terminal carriers and via other elements to the connection levels.
BRIEF DESCRIPTION OF THE PRIOR ART
Such an electrical apparatus is known from EP 95 113 730 A1. The apparatus disclosed in this publication has an internal bus conductor and connection blocks that are aligned on carrier rails and that are used for adapting signals between a superordinate field bus and switches, field apparatus or the like that are connected to the connection blocks. The connection blocks are made up of functionally different connection or module disks, including protective conductor or ground disks, supply disks, signal conductor disks and notch foot disks. One or several connection blocks can be connected via the internal bus conductor to a connection module for a field bus.
This prior electrical apparatus was effective. However, further simplification of the structure of the individual connection disk and a reduction in the number of connection disks of various types to form a connection block or connection module is desirable.
The present invention was developed to simplify the structure of the individual connection disks and reduce the dimensions of the modular electrical apparatus.
SUMMARY OF THE INVENTIONS
According to the invention, the bus bars for the electrical supply to the connection levels are distributed on both sides of the base terminal carrier and the bus bars of each individual electrical potential are guided only on one of the sides of the base terminal carrier to the pertinent connections. The connections that are supplied with one and the same electrical potential are connected directly with each other to form multiple connections.
As a result, it is no longer necessary to supply the two or more individual connections for disk or block structures, respectively, of each multiple connection individually via separate bus bars to the desired potentials. Rather, both the positive and the negative potential as well as the ground potential can be guided via only one bus bar branch on one of the sides of the plastic base disks to the multiple connections that are then directly connected with each other in the particular connection levels. To differentiate the signals of the connected devices, only the signal connections need still be guided over separate bus bars from the connection levels to the electronics of the connection module.
The present invention uses the bus bar guide layout set forth above in a module system where each connection module includes any number of alignable and mutually combinable module disks and module blocks that in each case are arranged on alignable base terminal carriers. The base terminal carriers can also be designed in disk form or in block form, although preference is given to the disk-type structure.
The particular base terminal carriers of the module disks and of the module blocks each have an electronic printed circuit board, an electronic housing and a cover. Furthermore, the electronic printed circuit board, the electronic housing and the cover of the module blocks in each case span several base terminal carriers, while the cover and preferably the electronic printed circuit board and the electronic housing of the module disks only span one of the base terminal carriers. Because module disks and module blocks are formed of identical and compatible base elements, it is possible to combine the block structure and the disk structure with each other in any desired fashion.
Depending on the particular manner of use, a reasonably priced connection module structure is available. Thus, a pure block structure for a larger number of connection devices of the same design results in cost savings. On the other hand, in the case of a few external devices, this can result in higher cost. With the present invention, it is possible to select the most favorable combination of block and disk structures for the desired use. The common base elements, both of the block structure and the disk structure, in each case are the base terminal carriers which receive the electronic printed circuit board. As an alternative, it is also possible that one of the electronic printed circuit boards and one of the electronic housings might span several aligned module disks or several electronic printed circuit boards are inserted in the electronic housings of the module blocks.
It is also possible that the module block and in particular, its base terminal carrier, comprises a lower part and a disk element on top.
The bus bar layout of the present invention can be implemented with the bus bars for the positive and negative potentials and additional bus bars for signal transmission inserted in lateral recesses of the base terminal carrier. The recesses extend from the connection levels with the double or multiple connections to connection openings for the purpose of receiving a plug on the electronic printed circuit board and/or the edge of the electronic printed circuit board into the base wall of the recess of a base terminal carrier.
The bus bar for connecting the ground connector to the connection level for the ground potential is preferably integrally molded upon the cross members of the ground. It is also advantageous when the terminal areas of the bus bars (and the functional ground contact) are made as connection contacts for connection of additional bus bars or printed circuit board edges, or when the terminal areas of the bus bars are made at least on one side, as receptacles for the contacts, the apparatus plug, or the edge of the electronic printed circuit board.
If more than four connection levels are desired, the bus bars are placed separately or integrally with extension bus bars to bridge the potentials between the various connection levels of the base terminal carriers. The latter are placed against the particular bus bar that is to be extended and turned by 90° with elastic ends. The elastic segments engage openings of the particular bus bar that is to be extended. Alternatively, the terminal areas of the extension bus bars engage elastic receiving sockets of the particular bus bar that is to be extended.
According to a further object of the invention, the supply of various electrical potentials within the module blocks occurs via the potential conductors in the area of the base terminal carriers facing, the carrier rail or between the multiple connections of a connection level by cross-connectors that are provided with stubs that engage receiving sockets elastically molded on the bus bars. As a result of the cross-connectors, it is not necessary in a module block to run separate bus bars to the connection levels in each base terminal carrier. The electrical potential supply takes place, for instance, only once when the performance within the module block remains uniform over the entire module block. Only the signal levels are still connected individually to the electronic supply of the module block via the terminal carriers. This simplifies the design of the module block and further provides the simplest possible bus bar guidance on the terminal carrier of the module disks with double connections in the direction toward a multiple connection system for the module blocks. The cross-connectors also reduce the plug-in and extraction forces during the removal and insertion of the electronic device.
The use of extension bus bars can also be implemented with the module block. Preferably, those bus bars are turned
Hanning Walter
Pilgrim Jens
Schnatwinkel Michael
Steinmeier Rudolf
Wilmes Manfred
Ballato Josie
Laubscher, Sr. Lawrence E.
Rios Roberto
Weidmüller Interface GmbH & Co.
LandOfFree
Modular electrical apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modular electrical apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular electrical apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2900815