Chemistry: electrical current producing apparatus – product – and – Having polarity safety feature
Reexamination Certificate
1997-06-06
2001-07-24
Maples, John S. (Department: 1745)
Chemistry: electrical current producing apparatus, product, and
Having polarity safety feature
C429S094000, C429S099000, C429S100000, C429S159000, C429S178000, C320S104000, C320S113000, C439S500000
Reexamination Certificate
active
06265091
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to electric storage batteries, and more particularly, to a modular electric storage battery adaptable for a variety of applications.
BACKGROUND OF THE INVENTION
Existing starting, lighting and ignition (SLI) batteries of the type commonly used to start the internal combustion engines of cars, trucks, motorcycles, lawn and garden equipment and the like are large, heavy, flooded electrolyte type lead-acid batteries. These batteries consist almost exclusively of a prismatic container into which a number of partitions are formed in order to define cells. Stacks of electrodes, made from interleaved positive and negative plates and separator material, are inserted into the cells and are electrically interconnected and connected with either top or side terminal mounts. The plates are typically lead or lead alloy grids covered with an active material such as lead dioxide. The cells are flooded with electrolyte, usually a dilute sulfuric acid solution, and a cover is heat sealed to the container. Vents are provided in the cover to allow for the venting of gases generated during the normal discharge and recharge cycles.
A typical SLI battery can weigh as much as twenty (20) kilograms. The construction also requires careful top-up mounting to avoid spillage of electrolyte. Because of its size, the use of liquid electrolyte, venting and other concerns, the SLI battery has typically been mounted within the engine compartment of cars and trucks. However, it is known that battery life is adversely affected by heat and vibration so the engine compartment is actually an undesirable location. In addition, the size, weight, liquid electrolyte and gassing makes replacing worn or discharged batteries a task best left to a skilled mechanic. Jump starting a vehicle when the battery is discharged poses certain problems, and requires a second vehicle or energy source.
Thin metal film battery technology provides in a compact design a high power battery cell. Cells of this type are well known and their construction and manufacture have been described in, for example, U.S. Pat. Nos. 3,494,800; 5,045,086; 5,047,300; 5,198,313 and 5,368,961 the disclosures of which are hereby expressly incorporated herein by reference. A thin metal film battery cell includes thin metal film plates sealed within a sealed cell container which is valve regulated. The cells include absorptive glass-mat (AGM) separator technology in an electrolyte starved system. The thin metal film plates are made from very thin lead foil approximately about 0.005 inches thick, pasted with an active material forming a pasted plate approximately about 0.012 inches thick. The plates are spiral wound with separator material, and terminations are cast-on or soldered to the ends of the spiral roll. The roll is encapsulated in a container which is filled with electrolyte and then sealed except for the vent. The performance characteristics of thin metal film cells include a high power weight ratio and rapid recharge capability.
In spite of the existence of alternate cell technology, the typical SLI battery remains a large, heavy, flooded electrolyte battery. Such SLI battery construction has left little flexibility to the car, truck or other product designer in packaging and protecting the SLI battery. Cars and trucks still find large, heavy SLI batteries located in the harsh under-hood environment.
In certain instances which can not be totally avoided, the SLI battery may become discharged such that it can not provide sufficient energy to start the engine of the car, truck or other product. The common response to this problem is to couple a second energy source, such as the electrical system of a second vehicle or a specially designed jump starting energy source, to the SLI battery. When coupled, the second energy source provides the energy to start the engine, and once running, the engine is capable of providing energy through a suitable charging system for recharging the discharged SLI battery. However, one must be careful to properly couple the energy sources. Failing to do so can lead to serious damage to the electrical system of the vehicle, the SLI battery and the second energy source. In the discharged battery situation, with a typical SLI battery it is highly impractical but would be very desirable to simply remove the discharged battery and replace it with another battery having sufficient charge to start the engine. Unfortunately, however, the typical large, heavy SLI battery is not readily removed or uncoupled from the vehicle. And, without a second energy source, the vehicle operator will be stranded.
SUMMARY OF THE INVENTION
A preferred embodiment of the present invention provides a modular electric storage battery capable of functioning as an SLI battery for a car or truck or adaptable to a number of other applications. The modular battery is maintenance free and sealed such that use and handling is greatly simplified. In some applications, the modular battery provides up to a 75 percent weight savings over traditional battery designs. The modular battery includes quick coupling terminals and is adapted to couple into a base unit adapted to a given application for supplying electrical energy thereto.
In another embodiment of the present invention, base units and modular batteries are designed to be interchangeable. That is, the base units include terminal posts and aligning features. Likewise, the modular batteries include terminals and complementary aligning features. The terminals are designed to couple without the use of tools. The base units may be designed to accept one of several sizes of modular batteries (for example the base unit would be designed to accept 1.2, 2.4, 4.8, etc. amp hour capacity modular batteries).
The base units may be configured to be installed and coupled into the electrical system of a motor vehicle such as a car, truck, motorcycle or lawn and garden tractor. A modular battery is plugged into the base unit for providing starting energy. This modular design offers a number of potential advantages. First among these is a very easy ability to replace a worn or discharged battery, or to install a higher capacity battery if necessary. In the event of battery discharge, as opposed to jumping, the discharged battery may be easily removed and a fresh battery plugged in to start the vehicle.
In still another preferred embodiment of the present invention, the vehicle may be adapted with a second base unit and a second modular battery. The second base unit is coupled into the vehicle electrical system so that the second modular battery plugged into the unit is maintained at a full state of charge. The second modular battery can then be used in jump starting situations by exchanging it for the starter modular battery. The second modular battery unit is also adapted to function with a number of accessory items. For example a lantern or flashlight attachment, a power wrench attachment, television or other portable electronic device and the like. The second modular battery unit may also be specially configured as, for example, a flashlight or similar item in which case an attachment is not necessary for providing the additional function.
In still an additional embodiment of the present invention, the base units form an integral part of the fuse block of an automotive electrical system or are installed as part of interior components. In this regard, the base unit may be made part of, for example, the instrument panel, the door trim panels or the seat structures of the vehicle. Thus it will be appreciated that the modular battery greatly frees the vehicle designer from the design constraints associated with the typical SLI battery.
These and other advantages and applications of the present invention will be appreciated by one of ordinary skill in the art from the following detailed description of the preferred embodiments and the attached drawings.
REFERENCES:
patent: 3814632 (1974-06-01), Miyagawa
patent: 4074017 (1978-02-01), Kinsey
patent: 4160857 (1979-07
Andrew Michael G.
Bolstad James J.
Daley James T.
Pierson John R.
Segall, Jr. William P.
Johnson Controls Technology Company
Maples John S.
Quarles & Brady LLP
LandOfFree
Modular electric storage battery does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modular electric storage battery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular electric storage battery will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2436791