Modular deployable antenna

Static structures (e.g. – buildings) – Openwork; e.g. – truss – trellis – grille – screen – frame – or... – Three-dimensional space-defining

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S749100, C052S648100, C052S651010, C052S645000, C182S141000, C267S156000

Reexamination Certificate

active

06463709

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a modular deployable antenna, to particularly the one applicable as a transmit-receive antenna 10 to 15 m long mounted in a mobile communications satellite, as an antenna for a remote-sensing satellite for investigating resources, and to a geostationary platform and a solar beam converging panel for a space station.
2. Description of the Related Art
The development of a large-sized deployable antenna applicable to a variety of purposes such as communication, broadcasting, and further survey of the earth and deep space is accelerated for the purpose of communicating more information at present. The basic idea in design of the large-sized deployable antenna varies considerably depending upon practicability, profitability or a purpose of use. For example, for an antenna applied to a communication or broadcasting satellite requiring a large-sized deployed reflector, efficiency of stowing an antenna into a launched satellite, light weight, reliability of a deploying mechanism and precision after deployment are primarily required. For such an antenna applied to such a satellite requiring a high-precision reflector, choice of material suitable for the location of use and reflector forming technique are required. In case an antenna is assembled in an orbit, the technique of assembling in an orbit is primarily required.
Referring to a large-sized deployed reflector, various types are developed at present. A deployable truss mesh type in which metallic mesh is spread on a deployable trussed back structure, an inflatable type which is hardened in a predetermined shape by expanding it with gas pressure, and a tension truss type constituted by an extensible mast mounted on the central support structure and extending outside the radius and specular mesh spread over the central support structure by the mast are contained.
Referring to the deployable truss mesh type above all, generally the back structure is constituted by combining plural modules constituted by a triangle or hexagonal prism serially, and mesh is fixed on a stand-off which is different in height respectively provided with an individual module.
Referring to the deployable truss mesh type, it is first required that sufficient precision of a reflector is kept even if the reflector is enlarged. It is also required that a reflector is rigid through it is kept light or lightened more. Further, the deploying and stowing operation must be smooth and reliable. Furthermore, to realize effective modularization, linkage or detachment of modules must be facilitated.
At present an antenna approximately 5 to 30 {overscore (m)} in diameter is developed all over the world, however, in any case, the frequency band is {overscore (L)} band.
SUMMARY OF THE INVENTION
The object of the present invention is to provide a modular deployable antenna which can handle a high-frequency wave wherein sufficient surface accuracy can be kept even if a reflector is enlarged, a reflector can be kept rigid through it is kept light or lightened more and further deploying and stowing operation is smooth and reliable.
Another object of the present invention is to provide a plane/line stowage trussed structure for mounting securely on the base structure constituting a large plane as a whole.
The other object of the present invention is to provide a plane stowage-type deployable truss for mounting securely on the base structure with high rigidity and reliability of deployment which can construct a plane structure by combining several plane stowage-type deployable trusses.
The other object different from the above-described of the present invention is to provide a line stowage-type deployable truss with high rigidity and reliability of deployment which can construct a plane structure by combining several line stowage-type deployable trusses.
The other object different from the above-described of the present invention is to provide a module linkage mechanism which facilitates attachment or detachment of modules even if the modules are constituted complicatedly.
The other object different from the above-described of the present invention is to provide a holding release mechanism which can hold a movable object securely in a given position to prevent vibration, can release it securely in the home position and may not damage it when released.
The other object different from the above-described of the present invention is provide a linked structure which can constitute a structure with curvature readily, is very rigid and has a simple structure.
The other object different from the above-described of the present invention is to provide a deployable diagonal structure which is effective for shearing or other force and can improve structural strength.
To achieve the above-described objects, the present invention provides a linked structure comprising two opposite parallel members; two opposite nonparallel members forming a quadrangle together by coupling them to the above-described parallel members through a hinge; and a intermediated coupling member coupled through a hinge so that it is parallel to one of the above-described nonparallel members in the middle of each of the above-described parallel members wherein the distance between the the hinges for the other nonparallel member can be changed.
In a preferred embodiment according to the present invention, the above-described distance can be changed by constituting so that an end of one of above-described parallel members can be moved along an end of corresponding nonparallel member.
In a preferred embodiment according to the present invention, the above-described distance can be changed by extending or contracting the other nonparallel member.
In a preferred embodiment according to the present invention, one end of the further provided diagonal member is connected to the corner of the above-described other nonparallel member, the other end is connected to the above-described one nonparallel member through a slider, and the above-described slider can be moved along the axis of the above-described one nonparallel member.
To achieve the above-described objects, the present invention provides a deployable diagonal structure comprising two opposite longitudinal members; and two diagonal members with a rotatable intersection for coupling the above-described two longitudinal members wherein the above-described two diagonal members can be deployed or stowed as if they are separating or approating.
In a preferred embodiment according to the present invention, each end of the above-described two longitudinal members is coupled to each end of the above-described two diagonal members and the above-described two diagonal members are provided with a folding or unfolding portion respectively between the above-described intersection and a connection point with one end of the above-described longitudinal member.
In a preferred embodiment according to the present invention, each end of one of the above-described two longitudinal members is coupled to each end of one of the above-described two diagonal members and each end of the other of the above-described two diagonal members is coupled to the above-described two longitudinal members so that they can be moved along the axis.
In a preferred embodiment according to the present invention, each end of one of the above-described two longitudinal members is coupled to each end of one of the above-described two diagonal members, the other end of one of the above-described two diagonal members is coupled to the end of one of the above-described two longitudinal members, the one diagonal member is provided with a folding or unfolding portion between the above-described-intersection and a coupled portion with the longitudinal member and the other end of the other of the above-described two diagonal members is coupled to the other of the above-described two longitudinal members so that it can be moved along the axis.
To achieve the above-described objects, the present invention provides a truncated hexagonal plan

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modular deployable antenna does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modular deployable antenna, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular deployable antenna will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2920502

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.