Data processing: software development – installation – and managem – Software program development tool – Code generation
Reexamination Certificate
2000-12-11
2004-06-22
Chavis, John (Department: 2124)
Data processing: software development, installation, and managem
Software program development tool
Code generation
C717S120000, C705S002000
Reexamination Certificate
active
06754883
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the field of analysis and development of bills of resources to be used during a procedure and, particularly, to a method for depicting relationships among different bills of resources and analyzing or refining resource utilization based thereon.
BACKGROUND OF THE INVENTION
Bills of resources are used in a variety of situations in order to insure that all of the resources necessary to perform certain tasks or procedures are available at the time that a procedure is to be performed. One of the simplest bills of resources would be a parts list for use during the assembly of an item. A more complex bill of resources might include a parts list as well as a list of required tools needed to complete the assembly of an item. For an extremely critical procedure, such as a medical operation, or the servicing of a vital component on an airplane or other piece of critical machinery, the bill of resources might well include parts, tools, equipment and labor resources required to perform the procedure.
In certain environments, similar procedures are conducted on a regular basis and, although the individuals performing the procedure may change or the procedure may vary slightly from one performance to the next, the necessary resources will be similar each time the procedure is performed. However, it is extremely likely that the resources allocated to the performance of the procedure from one time to the next will vary substantially based upon who is performing the procedure, variations in subjects of the procedure, when and where the procedure is performed, etc. Frequently, such variations in the bill of resources from each performance of the procedure will not reflect actual differing circumstances in the performance of the procedure, but will be a matter of habit, personal preference or even chance. However, it should be recognized that such variation adds costs and reduces efficiency. For example, such variation will likely require the stocking of multiple equivalent components in inventory which will tend to require the maintenance of a larger inventory and reduce discounts that might be received for bulk purchases of a single item. Furthermore, such variation reduces the accuracy of forecasts for required components, labor resources or equipment, since actual utilization will vary substantially from one performance to the next.
This problem is especially acute in the medical care field where substantial pressure is placed to reduce costs without compromising the quality of care. One trend is to move increasingly toward procedure-based unitized delivery systems in which a large portion of the supplies used in medical procedure are provided in one container. These systems allow for hospitals, and other health care facilities, to order just the supplies needed at the time a procedure is scheduled. Thus, the hospital may reduce their inventory of stocked supplies, labor associated with pulling supplies for a procedure, and use just-in-time ordering techniques which help to reduce costs. However, these procedure-based delivery systems have some drawbacks.
First, doctors are often very particular about the brand and style of medical supplies they use. For example, one doctor may prefer one brand of cautery pencil for his heart surgeries while a different doctor may prefer a different brand for the same surgery. Frequently, the number of doctor-preferred items will be large, thus requiring either that a number of different bills of resources be used for a given procedure, or that the hospital stock all of the doctor preference items and that they be pulled from inventory prior to performance of the procedure. However, these solutions often negate the advantages of the unitized delivery system since the stocking of doctor preference items will serve to increase inventory and labor requirements and the increase of bills of resources will prevent the supplier from generating economy of scale savings based on volume in a given bill of resources.
Also, these procedure-based unitized delivery systems do not address resource areas other than supplies. While supplies are a major component of a medical procedure, labor resources, reusable supplies and durable equipment are all important resources utilized in a medical procedure and their use should be analyzed and optimized.
Although the type and extent of possible benefits from bill of resource standardization have been desired for some time, the problem has been so complex that standardization has taken place on a superficial and ad hoc basis, when even attempted. For example, some healthcare facilities have opted into group purchasing plans in which the group will negotiate with certain suppliers for certain types of supplies in order to get the best price. With respect to this type of solution, for the few products affected, the best price may be obtained. However, such solutions typically relate only to small groups or classes of supplies and do not take into account actual usage history, real doctor preferences, procedure-specific requirements and certainly do not address labor, re-usable supplies, and durable equipment resource utilization. There is simply no consistent, logical and proven method for the standardization of procedure-based bills of resources.
The problem of bill of resource standardization and optimization is a complex one. For a relatively common procedure, such as a heart bypass operation, a vast number of different resources must be utilized. The list of medical supplies for the procedure runs many pages and a wide variety of labor and equipment resources must be brought together at just the right time. If the resources are expressed in mathematical terms, you get a problem with potentially hundreds of variables. Furthermore, each individual heart bypass procedure is a new mathematical problem with an equally large number of variables. Thus, simple and known analytical techniques are not readily adaptable to the problem of analyzing and optimizing bills of resources.
What is needed, therefore, is an integrated information system for use in a healthcare institution for analyzing, optimizing, and standardizing bills of resources for a given medical procedure performed within that institution.
SUMMARY OF THE INVENTION
The above and other needs are provided by an information management system for producing a standard bill of resources based on a plurality of bills of resources where each includes a list of resources to be utilized in performing a procedure. Included is a general purpose computer system with storage means for storing information related to the bills of resources, processing means for processing instructions relating to producing the at least one standard bill of resources, display means for presenting the standard bill of resources in a human perceptible format, and input means for receiving user input relating to producing the standard bill of resources.
Information management software is installed on the general purpose computer. Node software objects each provide a health care information management function. A clinical pathway node software object selectively creates, manages, and maintains user defined, user configurable clinical pathway module software objects adapted to function with the clinical pathway node software object, and represents provider specific procedural templates of the information relating to health care services procedures.
The clinical pathway module software objects include resource software objects that correspond to resources to be used in providing health care services. This includes the bills of resources that includes the list of resources to be utilized in performing the procedure. The clinical pathway modules software objects also include container software objects for containing software objects having at least one common characteristic.
A case management node software object selectively creates, manages, and maintains a user defined, user configurable case management module software object from the clinical pathway module software
Cofer Michael C.
DeBusk Brian C.
DeBusk Elizabeth C.
Lukens W. Francis
Shanks Mark W.
Chavis John
GE Medical Systems Information Technologies Inc.
Yoder Fletcher
LandOfFree
Modular analysis and standardization system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modular analysis and standardization system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular analysis and standardization system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3365122