Catalyst – solid sorbent – or support therefor: product or process – In form of a membrane
Patent
1999-01-26
2000-04-18
Straub, Gary P.
Catalyst, solid sorbent, or support therefor: product or process
In form of a membrane
502 60, 502 63, 502 64, 423 89, 423 99, 423111, 4231181, 95 45, 2105101, 210650, B01J 2028, B01J 2904, B01J 2906, C01G 1700, C01G 900
Patent
active
060515171
ABSTRACT:
A modified zeolite or molecular sieve membrane for separation of materials on a molecular scale. The modified membrane is fabricated to wholly or partially block regions between zeolite crystals to inhibit transfer of larger molecules through the membrane, but without blocking or substantially inhibiting transfer of small molecules through pores in the crystalline structure. The modified membrane has a monomolecular layer deposited on the zeolite surface which has coordinated groups of atoms that include (i) a metal atom bonded to oxygen atoms that are bonded to the zeolite substrate atoms (e.g., silicon atoms) and (ii) either hydroxyl groups bonded to the metal atoms or additional oxygen atoms bonded to the metal atoms.
REFERENCES:
patent: 3837500 (1974-09-01), Nicolas et al.
patent: 4699892 (1987-10-01), Suzuki
patent: 5019263 (1991-05-01), Haag et al.
patent: 5100596 (1992-03-01), Haag et al.
patent: 5258339 (1993-11-01), Ma et al.
patent: 5429743 (1995-07-01), Geus et al.
patent: 5464798 (1995-11-01), Jia et al.
patent: 5468699 (1995-11-01), Zhang et al.
patent: 5567664 (1996-10-01), Barri et al.
patent: 5753121 (1998-05-01), Geus et al.
patent: 5824617 (1998-10-01), Lai
"Separation of Hydrocarbon Isomer Vapors with Silicalite Zeolite Membranes," Funke, Kovalchick, Falconer, and Noble, Ind. Eng. Chem. Res., 35:1575-1582 (1996).
"Permeation of Aromatic Hydrocarbon Vapors Through Silicalite--Zeolite Membranes," Baertsch, Funke, Falconer, and Noble, J. Phys. Chem., 100:7676-7679 (1996).
"Atomic Layer Growth of SiO.sub.2 on Si(100) Using SiCl.sub.4 and H.sub.2 O in a Binary Reaction Sequence," Sneh, Wise, Ott, Okada, and George, Surface Science, 334:135-152 (1995).
"A Defect--Free Mordenite Membrane Synthesized by Vapour-Phase Transport Method," Nishiyama, Ueyama, and Matsukata, J. Chem. Soc., Chem. Commun., 1967-1968 (1995).
"Preparation of Zeolite ZSM-5 Membranes by In-Situ Crystallization on Porous .alpha.-Al.sub.2 O.sub.3," Yan, Davis, and Gavalas, Ind. Eng. Chem. Res., 34:1652-1661 (1995).
"Improvement of the Pervaporation Performance of Silicalite Membranes by Modification With a Silane Coupling Reagent," Sano, Hasegawa, Ejiri, Kawakami, and Yanagishita, Elsevier Science B.V., Microporous Materials, 5:179-184 (1995).
"Zeolite ZSM-5 Membranes Grown on Porous .alpha.-Al.sub.2 O.sub.3," Yan, Tsapatsis, Gavalas, and Davis, J. Chem. Soc., Chem. Commun., 227-228 (1995).
"Zeolite-in-Metal Membranes: Preparation and Testing," Kolsch, Venzke, Noack, Toussaint, and Caro, J. Chem. Soc., Chem. Commun., 2491-2492 (1994).
"Potentials of Silicalite Membranes for the Separation of Alcohol/Water Mixtures," Sano, Hasegawa, Kawakami, Kiyozumi, Yanagishita, Kitamoto, and Mizukami, Studies in Surface Science and Catalysis, Elsevier Science B.V., 84:1175-1182 (1994).
"Formation and Characterization of Zeolite Membranes from Sols," Xiang and Ma, Third International Conference on Inorganic Membranes, Worcester, MA, Ju. 10-14, 1994.
"Surface Chemistry of Al.sub.2 O.sub.3 Deposition Using Al(CH.sub.3).sub.3 and H.sub.2 O in a Binary Reaction Sequence," Dillon, Ott, George, and Way, Surface Science, Elsevier Science B.V., 1-13 (1994).
"Single and Multi-Component Transport Through Metal-Supported MFI Zeolite Membranes," Bakker, Zheng, Kapteijn, Makkee, Moulijn, Precision Process Technology, 425-436 (1993).
"Ceramic-Zeolite Composite Membranes and Their Application for Separation of Vapor/Gas Mixtures," Jia, Chen, Noble, and Falconer, Journal of Membrane Science, 90:1-10 (1994).
"Doorbraak in ontwikkeling zeolietmembranen," Bakker, Kapteijn, Jansen, Bekkum, and Moulijn, Proces Technologie, 7-16, (Dec. 1993).
"Synthesis and Characterization of a Pure Zeolitic Membrane," Tsikoyiannis and Haag, Zeolites, 12:126-130 (1992).
"High-Temperature Stainless Steel Supported Zeolite (MFI) Membranes: Preparation, Module Construction, and Permeation Experiments," Geus, van Bekkum, Bakker, and Moulijn, Microporous Materials, 1:131-147 (1993).
"Porous Crystal Membranes," Barrer, J. Chem. Soc. Faraday Trans., 86(7):1123-1130 (1990).
"Fine Control of the Pore-Opening Size of Zeolite ZSM-5 by Chemical Vapor Deposition of Silicon Methoxide," Niwa, Kato, Hattori, and Murakami, J. Phys. Chem., 90:6233-6237 (1986).
"Fine Control of the Pore-Opening Size of Zeolite Mordenite by Chemical Vapour Deposition of Silicon Alkoxide," Niwa, Kato, Hattori, and Murakami, J. Chem. Soc., Faraday Trans., 80:3135-3145 (1984).
"Silicalite, a New Hydrophobic Crystalline Silica Molecular Sieve," Flanigen, Bennett, Grose, Cohen, Patton, and Kirchner, Nature vol., 271:512-516 (1978).
Falconer John L.
Funke Hans H.
George Steven M.
Klaus Jason W.
Noble Richard D.
Nguyen Cam N.
Straub Gary P.
University Technology Corp.
Young James R.
LandOfFree
Modified zeolite membrane does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modified zeolite membrane, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modified zeolite membrane will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2336178