Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
1999-09-03
2003-07-08
Mendez, Manuel (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C604S164010
Reexamination Certificate
active
06589211
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a surgical operating system and one or more devices for performing such surgery. More particularly, the present invention relates to a device that permits effective lifting of the body wall without the need to provide insufflation. The present invention may be used in association with the surgical devices and related procedures described and claimed in the cross-referenced applications.
2. Description of the Prior Art
For many years most surgery was performed using an open technique. The surgeon made an incision dictated by the need to directly observe the area of interest and to insert his or her hand or hands, and/or one or more instruments to perform manipulations within the body cavity accessed through the incision. Retractors and assistants help to provide means of access. For many procedures these incisions are as long as 20 centimeters, traumatic, and painful. This translates into a painful recovery, prolonged hospitalization with a slow return to a normal functional state, and significant cost.
An alternative to open surgery, endoscopic surgery, has also been available for many years, though not as widely applied. Through an endoscope—a tubular optical system for viewing the interior of an organ or body cavity—tissues can be observed. An endoscope is used by making a small incision in the appropriate body covering. A hollow tube, or port, usually 10-25 cm in length and 5-30 mm in diameter, is placed through the incision and the endoscope is placed through the hollow tube. Through various other incisions and ports, other instruments can be placed into a body space for manipulation, grasping, cutting, coagulation etc., similar to open surgery. In the abdomen and pelvis the optical tube is called a laparoscope and the method laparoscopic surgery.
This laparoscopic surgical method usually includes a step of expanding the body cavity with air, inducing a state of pneumoperitoneum, which enhances the surgeon's view and ability to make manipulations. This is accomplished by one of two techniques, air insufflation or abdominal wall lifting. Abdominal wall lifting creates negative pressure within the cavity in relation to the atmosphere, drawing in air through a small incision when the wall is lifted. The disadvantage with this technique is that observation is imperfect. A tent is created with a central peak and a collapsed perimeter. Though most-structures have midline attachments, most endoscopic manipulations take place in the periphery. This is where visualization with this technique is worst. Insufflation is a positive pressure system using a medicinal vapor such as carbon dioxide or nitrogen injected into the peritoneal cavity to balloon the abdominal wall. Expansion is more uniform. Vision is better. This is the most widely used technique. Because of the positive pressure, however, the abdomen must be sealed to maintain expansion. This requires that all incisions and ports be sealed. Insufflation also has adverse respiratory and hemodynamic consequences due to positive pressure inhibiting chest expansion and venous blood return to the heart.
Though endoscopic surgery has been available for many years, its application has increased due primarily to the development of video monitoring equipment. This has allowed all members of the surgical team to observe, though indirectly, what only the surgeon could previously observe through a laparoscope. In some cases visualization is better than with direct observation. This has led to renewed interest and investigation of these techniques.
The benefit of endoscopic surgery is the limited incisional trauma, improved cosmesis, and decreased pain. For several simple techniques, such as laparoscopic cholecystectomy, this has translated into decreased hospitalization and earlier return to normal function, though cost savings is debated.
While some open surgical procedures have been adapted to laparoscopic technique, there are limitations with this method, particularly with more complex procedures. Fundamental problems relate to the access tubes used for inserting the various manipulative instruments. While limiting incisional trauma, the small diameter of these tubes dictates and limits the design of the inserted instruments. To achieve similar function as in open surgery, equipment becomes complex and therefore more expensive. There is also added risk with each access tube. Each tube requires a stab-wound of the body wall, risking injury to contained viscera with each puncture.
Equally important has been the impact on the surgeon's ability to manipulate tissue. The visual field may have been improved. However, tactile sensation, depth perception, and proprioceptive awareness of tissues have been markedly reduced by instruments that insulate the surgeon from the operative field. As the surgeon continually confirms that that which is done is that which is desired, procedural and anesthesia time increase. Furthermore, the limited access enabled by each port dictates that multiple ports be used. As procedural complexity increases, the surgeon must adapt to a continuously changing and less predictable environment than with simple procedures. The number of ports, and the risk and incidence of complications increases. The requirement for highly skilled and coordinated surgical teams also increases. This has resulted in long learning curves and has limited wide application of these procedures for complex cases.
One device in common usage to establish relatively small incisions for the insertion of equipment therethrough is the trocar. The trocar has a sharp end designed to pierce the skin as the surgeon presses it down to pierce through the skin. It may also pierce the underlying viscera unless great care is taken, particularly in view of the flexibility of the body wall. The trocar includes a cannula or tube used for drainage or for the insertion of a device into the body cavity. Since it is desirable to minimize the patient's wounds, there is an effort made to minimize the size of an incision associated with trocar use. As a result, the size of the tube used in the trocar-created incision is generally relatively small. It therefore can only be used to pass relatively small devices into the body cavity. Moreover, the narrow tube severely restricts maneuverability of the device contained therein. Therefore, though trocars offer the advantage of wound minimization, they are of some danger to the viscera, they are of restricted dimensions for allowing the passage of devices of interest therethrough, and they permit limited tactile manipulation.
One device apparently designed to assist in endoscopic procedures is described in U.S. Pat. No. 5,366,478 issued to Brinkerhoff. Brinkerhoff teaches a toroidal unit that is designed to be inflated so as to create an apparent sealing component through the center of which an arm or instrument is supposed to pass. However, Brinkerhoff specifically states that the “approximate height of the first (exterior) toroidal section 11 should be at least 2 inches to safely support an endoscopic instrument when the surgeon is not handling the instrument” (Col. 5, lines 23-26, of Brinkerhoff) Not only must the first toroidal section of the Brinkerhoff device be tall enough to support an instrument, it must inherently be stiff enough to do so, while also maintaining a seal. It is clear that in order to maintain a seal, a hand passing through the center of the device must be significantly restricted. The pressure and surface area of the device on the hand must limit forward and rotational movement within and below an incision. In addition, the overall height of the device, including those portions above, within, and below, the incision produces a fulcrum of significant overall length. It would be difficult, if not impossible, for a surgeon to reach all regions within the peritoneal cavity with the hand or an instrument, particularly those areas lateral to the incision and just below the body wall. The specific design of this de
Atwood Pierce
Mendez Manuel
LandOfFree
Modified trocar and methods of use does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modified trocar and methods of use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modified trocar and methods of use will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3074963