Stock material or miscellaneous articles – Composite – Of polyamidoester
Reexamination Certificate
2000-10-23
2002-10-15
Short, Patricia A. (Department: 1712)
Stock material or miscellaneous articles
Composite
Of polyamidoester
C525S127000, C525S130000, C525S131000, C525S455000, C156S331400
Reexamination Certificate
active
06465104
ABSTRACT:
FIELD OF THE INVENTION
This application relates to a quick-setting, moisture-curing polyurethane hotmelt adhesive, to its production and to its use.
BACKGROUND OF THE INVENTION
Moisture-curing or moisture-crosslinking polyurethane hotmelt adhesives are adhesives which are solid at room temperature and which are applied in the form of a melt, their polymeric constituents containing urethane groups and reactive isocyanate groups. Cooling of the melt results initially in rapid physical setting of the adhesive followed by a chemical reaction of the isocyanate groups still present with moisture to form a cross-linked, infusible adhesive. It is only after this chemical curing with moisture, accompanied by an increase in the size of the molecules and/or crosslinking, that the adhesive acquires its final properties. Polyurethane hotmelt adhesives in the narrower sense are largely free of solvents.
The main advantages of hotmelt adhesives over other adhesive systems lies in their very quick setting ability and in the absence of water and solvents in their composition.
Corresponding moisture-curing polyurethane hotmelt adhesives for bonding various substrates are known.
Thus, DE-A-32 36 313 describes a hotmelt adhesive containing a prepolymeric isocyanate, a thermoplastic polymer and a low molecular weight synthetic resin. The prepolymeric isocyanate is reactive polyurethane prepolymer of an aromatic diisocyanate and/or a prepolymer of this diisocyanate with a short-chain diol and of a polyether or a polyester containing OH groups and a short-chain diol.
This hotmelt adhesive is suitable for the bonding of thermoplastics and thermosets, foams, painted surfaces, rubber, textiles, nonwoven materials, leather, wood, metal and paper. For formulations that are intended to have high initial strengths and to be applied to porous materials, 5 to 40% by weight of the thermoplastic polyurethane has to be added. Unfortunately, this increases the melt viscosity with the result that these adhesives can only be applied by spraying at very high temperatures.
Also known is a moisture-curing hotmelt adhesive consisting of a polyurethane prepolymer A with hard and soft chain segments and terminal isocyanate groups and a urethane prepolymer B with soft chain segments and terminal isocyanate groups. The prepolymer A is prepared in steps from a thermoplastic saturated polyester polyol with a molecular weight of 1,000 to 6,000 and a melting point of 50° C. or higher, a polyol with a molecular weight of not more than 8,000 and a diisocyanate. The prepolymer B is prepared from a polyol with a molecular weight of not more than 8,000 and a diisocyanate. This polyol may be liquid at room temperature or may have a melting point below 50° C. 4,4′-diphenyl methane diisocyanate or toluene diisocyanate is said to be particularly preferred as the diisocyanate. Unfortunately, these hotmelt adhesives require an elaborate production process. Either the prepolymer A and the prepolymer B are prepared in a three-stage process or the polymers have to be prepared in separate two-stage or one-stage processes and subsequently mixed. The melt viscosity of these adhesives at 120° C. is very high (>1 million mPas) so that not only are these adhesives expensive to produce, they are also unsuitable for spray application and other applications requiring low melt viscosity.
EP-A-340 906 describes a quick-setting polyurethane hotmelt adhesive consisting of a mixture of at least two amorphous polyurethane prepolymers, the two prepolymers having different glass transition temperatures. The first polyurethane prepolymer preferably has a glass transition temperature above room temperature while the second polyurethane prepolymer has a glass transition temperature below room temperature. The polyurethane prepolymer with the higher glass transition temperature preferably consists of a polyester diol and a polyisocyanate while the polyurethane prepolymer with the lower glass transition temperature preferably consists of a linear or lightly branched polyester or of a polyether. Aromatic diisocyanates, such as 4,4′-diphenyl methane diisocyanate or 2,4-toluene diisocyanate, are said to be preferred diisocyanates. The viscosities of these hotmelt adhesives at 130° C. are in the range from at least 30,000 to 90,000 mPas.
According to EP-B-354 527, hotmelt adhesives can be produced from reaction products of polyisocyanates and hydroxypolyesters, the hydroxypolyesters containing more than 50% by weight of a hydroxypolyester A. The hydroxypolyester A is synthesized from aliphatic diols, optionally ether diols and aliphatic dicarboxylic acids containing 8 to 12 methylene groups. The aliphatic dicarboxylic acids may optionally be partly replaced by aromatic dicarboxylic acids, although in a preferred embodiment at least 50 mole-% of the dicarboxylic acids consist of dodecanedioic acid. The very fast setting rate of these hotmelt adhesives is attributable to their rapid recrystallization in the glueline after application from the melt. Preferred fields of application are said to be the shoe industry, the wood-processing industry, the paper industry and the metal processing industry.
EP-A-369 607 describes quick-setting, moisture-curing polyurethane hotmelt adhesives based on polyurethanes which contain at least one polyether-based prepolymer with a glass transition temperature above room temperature and a second polyurethane prepolymer with a glass transition temperature below room temperature. The second polyurethane prepolymer may be based on an amorphous polyester, a linear or lightly branched polyether or a polybutadiene. Polyols with a molecular weight of, preferably, 250 to 800 and, more preferably, around 400 are proposed for the polyurethane prepolymer with the high glass transition temperature. This results in relatively high isocyanate contents in the final hotmelt adhesive so that it can only be applied in thin layers to avoid foaming under the effect of the carbon dioxide formed from the isocyanate-moisture reaction.
According to EP-A-248 658, polyurethane hotmelt adhesives can be produced from a reaction product of diisocyanates and crystalline polyester diols, the polyester diols having been prepared from symmetrical aromatic dicarboxylic acids and having an acid component of at least 50 mole-%. In preferred embodiments, the free isocyanate groups are blocked, for example by acetyl acetone. Although this measure reduces the sensitivity of the hotmelt adhesive to moisture and thus increases stability in storage, the setting rate is significantly increased because the isocyanate group first has to be converted back into its reactive form in a deblocking step in view of the application temperature.
EP-A-472 278 describes an adhesive composition consisting of a polyalkylene ether diol, a polyalkylene ether triol, a polyester polyol and an aliphatic isocyanate compound. The isocyanate compound is preferably a non-aromatic, cyclic or linear aliphatic organic polyisocyanate with a functionality of 2 to 4 and preferably 2 to 3. The polyalkylene ether diols are, in particular, polytetramethylene ether diol, polyethylene glycol, polypropylene glycol or polybutylene ether diol, the polytetramethylene glycols being preferred. The polypropylene ether triols are preferred for the polyalkylene ether triols. The preferred polyester polyol is a lactone-based polyester polyol, such as polycaprolactone for example, a polycaprolactone triol from the reaction of caprolactone with trimethylol propane being particularly preferred. The effectiveness of this hotmelt adhesive is attributed to the relatively high crystallinity of the polyester polyol-based urethane segment. The adhesive composition is suitable for use on fabrics, nonwoven materials, wood, metal, leather and plastics. The melt viscosities of the adhesives are not mentioned.
Also, a modified polyurethane adhesive composition has been described consisting of an isocyanate-terminated prepolymer with a molecular weight of at least 1,000 and 2.5 to 100% by weight, based on the above prepoly
Krebs Michael
Li Yingjie
Scheffler Ingolf
Harper Stephen D.
Henkel Kommanditgesellschaft auf Aktien
LandOfFree
Modified polyurethane hotmelt adhesive does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modified polyurethane hotmelt adhesive, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modified polyurethane hotmelt adhesive will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2998643