Modified polymers having controlled transmission rates

Stock material or miscellaneous articles – Hollow or container type article

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S035700, C428S036500, C428S304400, C034S095000, C206S204000

Reexamination Certificate

active

06221446

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to the use of modified thermoplastics; more particularly, the present invention relates to modified thermoplastics having controlled transmission rates for use in or with packaging material. In one embodiment, the present invention relates to modified polymers blended with one or more absorbtion additives to form an absorbtion additive entrained polymer. The invention further relates to absorbtion additive entrained polymers that include means by which the absorbtion additive located within interior portions of the polymer structure are exposed to conditions that are exterior to the polymer body. The absorbtion additive entrained polymer of the present invention is useful in the manufacture of containers and packaging for items requiring controlled environments.
BACKGROUND OF THE INVENTION
There are many items that are preferably stored, shipped and/or utilized in an environment that must be controlled and/or regulated. For example, in the moisture control area, containers and/or packages having the ability to absorb excess moisture trapped therein have been recognized as desirable. One application in which moisture absorbing containers are desired is for the shipment and storage of medications whose efficacy is compromised by moisture. The initial placement of medicines into a sealed moisture free container is usually controllable. Furthermore, the container for the medicine is selected so that is has a low permeability to moisture. Therefore, the medication will normally be protected from moisture until it reaches the end user. Once the medicine is received by the customer, however, the container must be repeatedly opened and closed to access the medication. Each time the container is opened and unsealed, moisture bearing air will most likely be moisture bearing air introduced into the container and sealed therein upon closure. Unless this moisture is otherwise removed from the atmosphere or head space of the container, it may be detrimentally absorbed by the medication. For this reason, it is a well known practice to include to desiccating unit together with the medication in the container.
Other items, electronic components may require reduced moisture conditions for optimal performance. These components may be sealed in containers, but excess moisture that is initially trapped therein must be removed. Furthermore, the housings may not be completely moisture tight, and moisture may be allowed to seep into the container. This moisture must also be retained away from the working components. For these reasons, it is important to include a desiccating agent within the housing for absorbing and retaining excess moisture. Because of the delicacy of many of the components that are to be protected from the moisture, it is important that the desiccant used not be of a “dusting” nature that may contaminate and compromise the performance of the components. Therefore, it has been recognized as advantageous to expose a desiccating agent to the interior space of such containers, while at the same time shielding the working components from actual contact with the desiccating material, including desiccant dust that may be produced therefrom.
In other instances, moisture may be released from items that have been placed in containers or sealed in packaging wrap for shipping and/or storage. Prime examples of such items are food stuffs-that release moisture during shipping and storage. In the instance of containers that are sealed and substantially impermeable to moisture, the released moisture will remain within the container. If not removed, this released moisture may have ill effects on the very item that released the moisture. It has been found that a substantial amount of moisture is released from certain food products within the first forty-eight (48) hours after manufacture and packaging. This released moisture will remain until removed. If the moisture is not removed shortly after its release, it may cause the food to degrade into a condition that is not saleable. In these cases, desiccants may be included together with the contained items to continually absorb the released moisture until the product is unpacked. In this way, a relatively dry environment is maintained about the stored item.
The need to eliminate moisture from within sealed containers has been previously recognized. Early attempts to achieve these goals included the provision of desiccant materials in fabric or similar bags that are placed in the containers together and commingled with the matter being shipped or stored. A consumer related problem, however, exists when the desiccant is loose and commingled together with consumable items. If not carefully and thoroughly processed upon unpacking, the desiccant may not be separated from the consumables and could harm a person if unknowingly ingested.
Several inventions have been patented that include both structures and processes that provide means for absorbing moisture by way of a desiccant that is included in various forms of packaging. A most basic example is found in the disclosure of U.S. Pat. No. 326,810 issued Jun. 20, 1967 to Dolan et al. for a DESICCANT PACKAGE. That patent includes disclosure of a non-dusting silica gel desiccant bag. The bag is created from two sheets of nylon mesh that are bonded into a bag within which the silica gel is contained. Another known method by which a desiccant is included in a container is to provide a special side-compartment having limited exposure to the interior of the container. Examples of such inventions are found in U.S. Pat. No. 4,834,234 issued May 30, 1989 to Sacherer et al for a CONTAINER FOR TEST STRIPS. Sacherer provides a drying agent cell or compartment within the cap portion of a container for test strips that are used in the analysis of body fluids. It is disclosed that the drying agent cell is covered by a water vapor-permeable cardboard disc that separates that cell from the interior of the container. A similar example is found in U.S. Pat. No. 5,114,003 issued May 19, 1992 to Jackisch et al for a TABLET VIAL WITH DESICCANT IN BOTTOM. Jackisch includes disclosure of a desiccant canister that is secured to the bottom inside of a container's base. The desiccant canister within which the desiccating material is contained is initially sealed to prevent the absorption of moisture. Immediately prior to use, the desiccant canister is punctured and communication of moisture across the container is allowed to the desiccant.
In another example, separate capsules of desiccant that are expensive to produce are provided within the packaging. U.S. Pat. No. 4,783,206 issued Nov. 8, 1988 to Cullen et al for an ADSORBENT CARTRIDGE describes an elongated hollow cylindrical body fabricated of polyethylene, polyester or polypropylene. A desiccating agent is enclosed within the cartridge thereby maintaining the desiccant separate from other items commonly contained within the common container. By the cartridge's construction, it is intended that moisture pass only through the end caps constructed of spun-bonded polyolefin, and not the rigid, high density plastic side walls of the cartridge. A DRYING CAPSULE is disclosed in U.S. Pat. No. 2,638,179 issued May 12, 1953 to Yard. The drying capsule of Yard includes a desiccant that is encapsulated within a moisture permeable skin. The desiccant, which is contained within the capsule, absorbs moisture from the skin, and not directly from the outside atmosphere. The gelatin capsule is used as a regulator for governing the rate at which moisture is absorbed by the desiccating agent.
Another instance in which desiccant agents have been combined with polymers is bound in layered plastic sheeting in which an interior oxygen impermeable layer must be protected against moisture which compromises the oxygen barrier characteristics of that interior layer. Examples of such utilization of a desiccant in a layered structure may be found in U.S. patents that are assigned to the American Can Company of Greenwich, Conn. and to the Kura

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modified polymers having controlled transmission rates does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modified polymers having controlled transmission rates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modified polymers having controlled transmission rates will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2456923

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.