Modified factor VIII

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S069100, C435S320100, C435S325000, C514S002600, C514S008100, C514S04400A, C514S802000, C514S834000, C530S383000, C536S023100

Reexamination Certificate

active

06458563

ABSTRACT:

BACKGROUND OF THE INVENTION
Blood clotting begins when platelets adhere to the cut wall of an injured blood vessel at a lesion site. Subsequently, in a cascade of enzymatically regulated reactions, soluble fibrinogen molecules are converted by the enzyme thrombin to insoluble strands of fibrin that hold the platelets together in a thrombus. At each step in the cascade>a protein precursor is converted to a protease that cleaves the next protein precursor in the series. Cofactors are required at most of the steps.
Factor VIII circulates as an inactive precursor in blood, bound tightly and non-covalently to von Willebrand factor. Factor VIII is proteolytically activated by thrombin or factor Xa, which dissociates it from von Willebrand factor and activates its procoagulant function in the cascade. In its active form, the protein factor VIIIa is a cofactor that increases the catalytic efficiency of factor IXa toward factor X activation by several orders of magnitude.
People with deficiencies in factor VIII or antibodies against factor VIII who are not treated with factor VIII suffer uncontrolled internal bleeding that may cause a range of serious symptoms, from inflammatory reactions in joints to early death. Severe hemophiliacs, who number about 10,000 in the United States, can be treated with infusion of human factor VIII, which will restore the blood's normal clotting ability if administered with sufficient frequency and concentration. The classic definition of factor VIII, in fact, is that substance present in normal blood plasma that corrects the clotting defect in plasma derived from individuals with hemophilia A.
The development of antibodies (“inhibitors” or “inhibitory antibodies”) that inhibit the activity of factor VIII is a serious complication in the management of patients with hemophilia. Autoantibodies develop in approximately 20% of patients with hemophilia A in response to therapeutic infusions of factor VIII. In previously untreated patients with hemophilia A who develop inhibitors, the inhibitor usually develops within one year of treatment. Additionally, autoantibodies that inactivate factor VIII occasionally develop in individuals with previously normal factor VIII levels. If the inhibitor titer is low enough, patients can be managed by increasing the dose of factor VIII. However, often the inhibitor titer is so high that it cannot be overwhelmed by factor VIII. An alternative strategy is to bypass the need for factor VIII during normal hemostasis using factor IX complex preparations (for example, KONYNE®, Proplex®) or recombinant human factor VIIa. Additionally, since porcine factor VIII usually has substantially less reactivity with inhibitors than human factor VIII, a partially purified porcine factor VIII preparation (HYATE:C®) has been used. Many patients who have developed inhibitory antibodies to human factor VIII have been successfully treated with porcine factor VIII and have tolerated such treatment for long periods of time. However, administration of porcine factor VIII is not a complete solution because inhibitors may develop to porcine factor VIII after one or more infusions in some patients.
Several preparations of human plasma-derived factor VIII of varying degrees of purity are available commercially for the treatment of hemophilia A. These include a partially-purified factor VIII derived from the pooled blood of many donors that is heat- and detergent-treated for viruses but contain a significant level of antigenic proteins; a monoclonal antibody-purified factor VIII that has lower levels of antigenic impurities and viral contamination; and recombinant human factor VIII, clinical trials for which are underway. Unfortunately, human factor VIII is unstable at physiologic concentrations and pH, is present in blood at an extremely low concentration (0.2 &mgr;g/ml plasma), and has low specific clotting activity. Public health concerns regarding the risk of viruses or other blood-borne contaminants have limited the usefulness of porcine factor VIII purified from porcine blood.
Hemophiliacs require daily replacement of factor VIII to prevent bleeding and the resulting deforming hemophilic arthropathy. However, supplies have been inadequate and problems in therapeutic use occur due to difficulty in isolation and purification, immunogenicity, and the necessity of removing the AIDS and hepatitis infectivity risk. The use of recombinant human factor VIII or partially-purified porcine factor VIII will not resolve all the problems.
The problems associated with the commonly used, commercially available, plasma-derived factor VIII have stimulated significant interest in the development of a better factor VIII product. There is a need for a more potent factor VIII molecule so that more units of clotting activity can be delivered per molecule; a factor VIII molecule that is stable at a selected pH and physiologic concentration; a factor VIII molecule that is less apt to cause production of inhibitory antibodies; and a factor VIII molecule that evades immune detection in patients who have already acquired antibodies to human factor VIII.
It is therefore an object of the present invention to provide a factor VIII that corrects hemophilia in a patient deficient in factor VIII or having inhibitors to human factor VIII.
It is a further object of the present invention to provide methods for treatment of hemophiliacs.
It is still another object of the present invention to provide a factor VIII that is stable at a selected pH and physiologic concentration.
It is yet another object of the present invention to provide a factor VIII that has greater coagulant activity than human factor VIII.
It is an additional object of the present invention to provide a factor VIII against which less antibody is produced.
It is a further object of the invention to provide a method for making recombinant porcine factor VIII and specifically modified porcine factor VIII.
SUMMARY OF THE INVENTION
The determination of the entire DNA sequence encoding porcine factor VIII set forth herein has enabled, for the first time, the synthesis of full-length porcine factor VIII by expressing the DNA encoding porcine factor VIII in a suitable host cell. Purified recombinant porcine factor VIII is therefore an aspect of the present invention. The DNA encoding each domain of porcine factor VIII as well as any specified fragment thereof, can be similarly expressed. Furthermore, porcine fVIII having all or part of the B domain deleted (B-domainless porcine fVIII) is made available as part of the present invention, by expression DNA encoding porcine fVIII having a deletion of one or more codons of the B-domain.
Also provided are pharmaceutical compositions and methods for treating patients having factor VIII deficiency comprising administering recombinant porcine factor VIII or a modified recombinant porcine factor VIII, in particular a B-domainless porcine factor VIII.


REFERENCES:
patent: 4757006 (1988-07-01), Toole
patent: 5364771 (1994-11-01), Lollar
patent: 5563045 (1996-10-01), Pittman et al.
patent: 5663060 (1997-09-01), Lollar et al.
patent: 0 306 968 (1988-09-01), None
patent: WO 91/07438 (1990-11-01), None
patent: WO 94/11503 (1994-05-01), None
patent: WO 97/03191 (1997-01-01), None
patent: WO 97/03193 (1997-01-01), None
Verma et al. Gene Therapy- promises, problems and prospects, (Sep. 1997), Nature, vol. 389, pp. 239-242.*
Church, et al. “Coagulation factors V and VIII and ceruloplasmin constitute a family of structurally related proteins”; (1984)Proc. Natl. Acad. Sci. USA81:6934.
Gitcher, J. et al. Characterization of the human factor VIII gene; (1984)Nature312:326-330.
Lubin, et al. “Elimination of a Major Inhibitor Epitope in Factor VIII”; (1994)J. Biol. Chem.269:8639-8641.
Scandella, D. et al. “Some Factor VIII Inhibitor Antibodies Recognize a Common Epitope Corresponding to C2 Domain Amino Acids 2248 Through 2312, Which Overlap a Phospholipid-Binding Site”; (1995)Blood86:1811-1819.
Toole, et al. “Molecular cloning of a cDNA encoding human antihaemophilic factor”; (1984)Nature312:

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modified factor VIII does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modified factor VIII, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modified factor VIII will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2945470

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.