Modified antibody variable domains

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Using tissue cell culture to make a protein or polypeptide

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

435 691, 4351721, 4351723, 4241331, 5303873, 536 2353, C12P 2104, C12N 1500, C07K 1600, A61K 39395

Patent

active

057668868

DESCRIPTION:

BRIEF SUMMARY
FIELD OF THE INVENTION

The present invention relates, in general, to methods for preparing a modified antibody variable domain by determining the amino acid residues of the antibody variable domain which may be modified without diminishing the native affinity of the domain for antigen while reducing its immunogenicity with respect to a heterologous species; to methods of preparation of and use of antibody variable domains having modifications at the identified residues which are useful for administration to heterologous species; and to the variable regions so modified. More particularly, the invention relates to the preparation of modified mouse antibody variable domains, which are modified for administration to humans, the resulting antibody variable domains themselves, and the use of such "humanized" antibodies in the treatment of diseases in humans.


BACKGROUND

Application of unmodified mouse monoclonal antibodies in human therapy is problematic for three reasons. First, an immune response against the mouse antibodies is mounted in the human body. Second, the antibodies have a reduced half-life in the human circulatory system. Third, the mouse antibody effector domains may not efficiently trigger the human immune system.
There are three methods which have attempted to eliminate the foregoing problems. Junghans et al., Cancer Res., 50, 1495-1502 (1990) and other publications describe the utilization of genetic engineering techniques to link DNA encoding murine variable regions to DNA encoding human constant regions, creating constructs which when expressed generate a hybrid mouse/human antibody.
Also by genetic engineering techniques, the genetic information from murine hypervariable complementarity determining regions (CDRs) may be inserted in place of the DNA encoding the CDRs of a human monoclonal antibody to generate a construct encoding a human antibody with murine CDRs. This technique is known as "CDR grafting". See, e.g., Jones et al., Nature, 321, 522-525 (1986); Junghans et al., supra.
Protein structure analysis may be used to "add back" murine residues, again by genetic engineering, to first generation variable regions generated by CDR grafting in order to restore lost antigen binding capability. Queen et al., Proc. Natl. Acad. Sci. USA, 86, 10029-10033 (1989); Co, et al., Proc. Natl. Acad. Sci. USA, 88, 2869-2873 (1991) describe versions of this method. The foregoing three methods are techniques to "humanize" mouse monoclonal antibodies.
As a result of the humanization of mouse monoclonal antibodies, specific binding activity of the resulting humanized antibodies may be diminished or even completely abolished. For example, the binding affinity of the modified antibody described in Queen et al., supra, is reported to be reduced three-fold; in Co et al., supra, is reported to be reduced two-fold; and in Jones et al., supra, is reported to be reduced two- to three-fold. Other reports describe order-of-magnitude reductions in binding affinity. See, e.g., Tempest et al., Bio/Technology, 9, 266-271 (1991); Verhoeyen et al., Science, 239, 1534-1536 (1988).
A system for differentiating between the various subsets of T Cells, based upon cell surface antigens, is the Clusters of Differentation System (hereinafter referred to as the "CD System"). The CD System represents standard nomenclature for molecular markers of leukocyte cell differentation molecules. See Leukocyte Typing III White Cell Differentiation Antigens (Michael, ed. Oxford Press 1987), which is incorporated herein by reference.
So-called "pan T cell" markers (or antigens) are those markers which occur on T Cells generally and are not specific to any particular T cell subset(s). Pan T Cell markers include CD2, CD3, CD5, CD6, and CD7. The CD5 cluster antigen, for example, is one of the pan T markers present on about 85-100% of the human mature T lymphocytes and a majority of human thymocytes. CD5 is also present on a subset, about 20%, of B cells. Extensive studies using flow cytometry, immunoperoxidase staining, and red cell lysis have d

REFERENCES:
patent: 4391904 (1983-07-01), Litman et al.
patent: 4816397 (1989-03-01), Boss et al.
patent: 4816567 (1989-03-01), Cabilly et al.
patent: 4853871 (1989-08-01), Pantoliano et al.
patent: 4888415 (1989-12-01), Lambert et al.
patent: 4925673 (1990-05-01), Steiner et al.
patent: 4946778 (1990-08-01), Ladner et al.
patent: 5101025 (1992-03-01), Piatak, Jr. et al.
patent: 5225539 (1993-07-01), Winter
patent: 5585089 (1996-12-01), Queen et al.
Ahmed, BioEssays, 6(4):175-177 "Structure and Function of Chimaeric Antibodies".
Alegre et al., J. Immunol., 148(11):3461-3468 (1992) "Effect of a Single Amino Acid Mutation on the Activating and Immunosuppressive Properties of a Humanized OKT3 Monoclonal Antibody".
Antin, et al., Blood, 78(8):2139-2149 (1991) "Selective Depletion of Bone Marrow T Lymphocytes With Anti-CD5 Monoclonal Antibodies: Effective Prophylaxis for Graft-Versus-Host Disease in Patients With Hematologic Malignancies".
Barry, Dermatological Formulations p. 181 (1983) "Percutaneous Absorption".
Better, et al., Science, 240:1041-1043 (1988) "Escherichia coli Secretion of an Active Chimeric Antibody Fragment".
Better et al., J. Biol. Chem., 267(23): 16712-16718 (1992) "Activity of Recombinant Mitogillin and Mitogillin Immunoconjugates".
Better et al., Proc Natl. Acad. Sci. USA, 90: 457-461 (1993) "Potent Anti-CD5 Ricin A Chain Immunoconjugates from Bacterially Produced Fab' and F(ab ')2".
Bird et al., Science, 242: 423-426 (1988) "Single-Chain Antigen-Binding Proteins".
Bolt et al., Eur. J. Immunol, 23(2): 403-411 (1993) "The Generation of Humanized, Non-Mitogenic CD3 Monoclonal Antibody Which Retains In Vitro Immunosuppressive Properties".
Borrebaeck et al., Bio/Technology, "Kinetic Analysis of Recombinant Antibody-Antigen Interactions: Relation Between Structural Domains and Antigen Binding".
Boulianne et al., Nature, 312: 643-646 (1984) "Production of Functional Chimeric Mouse/Human Antibody".
Brady et al., J. Mol. Biol., 227:253-264 (1992) "Crystal Structure of a Chimeric Fab' Fragment of an Antibody Binding Tumour Cells".
Brown et al., Proc. Natl. Acad. Sci. USA, 88: 2663-2667 (1991) "Anti-Tac-H, a Humanized Antibody To The Interleukin 2 Receptor, Prolongs Primate Cardiac Allograft Survival".
Bruggemann et al., J. Exp. Med., 170: 2153-2157 (1989) "The Immunogenicity of Chimeric Antibodies".
Buchner et al., Biotechnology, 9: 157-162 (1991) "Renaturation, Purification and Characterization of Recombinant F.sub.ab -Fragments Produced in Escherichia coli".
Byers et al., Blood, 75(7): 1426-1432 (1990) "Use of An Anti-Pan T-Lymphocyte Ricin A Chain Immunotoxin in Steroid-Resistant Acute Graft-Versus-Host Disease".
Caron et al., Cancer Res., 52(24): 6761-6767 (1992) "Biological and Immunological Features of Humanized M195 (Anti-CD33) Monoclonal Antibodies".
Carter et al., Proc. Natl. Acad. Sci. USA, 89: 4285-4289 (1992) "Humanization of Anti-p185.sup.HER2 Antibody for Human Cancer Therapy".
Case et al., Proc. Natl. Acad. Sci. USA, 86: 287-291 (1989) "Chimeric Cytotoxin IL2-PE40 Delays and Mitigates Adjuvant-Induced Arthritis in Rats".
Cheadle et al., Mol. Immunol., 29: 21-30 (1992) "Cloning and Expression of the Variable Regions of Mouse Myeloma Protein MOPC315 in E. coli:Recovery of Active F.sub.x Fragments".
Chothia et al., The EMBO Journal, 7(12): 3745-3755 (1988) "The Outline Structure of the T-Cell .alpha..beta. Receptor".
Chothia et al., J. Mol. Biol., 196: 901-917 (1987) "Canonical Structures for the Hypervariable Regions of Immunoglobulins".
Chothia et al., Nature, 342: 877-883 (1989) "Conformations of Immunoglobulin Hypervariable Regions".
Chothia et al., J. Mol. Biol., 186: 651-663 (1985) "Domain Association in Immunoglobulin Molecules, The Packing of Variable Domains".
Chothia and Lesk, Cold Spring Harbor Symp. Quant. Biol., 52: 399-405 (1987) "The Evolution of Protein Structures".
Choy et al., Scandinavian J. Immunol., 36: 291-298 (1992) "Treatment of Rheumatoid Arthritis With Single Dose or Weekly Pulses of Chimaeric Anti-CD4 Monoclo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modified antibody variable domains does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modified antibody variable domains, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modified antibody variable domains will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1724341

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.