Surgery – Internal organ support or sling
Reexamination Certificate
2001-11-19
2004-02-03
Winakur, Eric F. (Department: 3736)
Surgery
Internal organ support or sling
C128S898000
Reexamination Certificate
active
06685627
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to treatment of heart failure and more particularly, treatment of heart failure by reducing the internal volume of a dilated and diseased left ventricle.
BACKGROUND OF THE INVENTION
Congestive heart failure is a chronic, degenerative condition that impairs the heart's ability to pump blood at normal filling pressures to adequately meet the energy requirements of the body. It is estimated that 4.9 million Americans suffer from various degrees of congestive heart failure (CHF), with about 400,000 new cases identified each year. Heart failure is the most common diagnosis in hospital patients over the age of 65, and it carries a mortality rate higher than that for malignant tumors. One in five CHF patients dies within one year of diagnosis and only 15% survive more than 10 years.
There is no cure for CHF short of a heart transplant. However, advances in pharmacology have provided improved treatment programs. Multidrug treatment regimens that include diuretics, vasodilators and inotropic agents such as angiotensin-converting enzyme (ACE) inhibitors, can slow the progression of CHF and reduce the number of acute episodes. However, treatment remains directed at symptoms and is most effective in the early stages of CHF.
In later stages of the disease, mechanical devices can play an important role. Speciality left ventricular pacemakers can improve the heart's function as a pump, while cardiac assist devices may be used to help support the failing heart. These devices primarily address the needs of approximately 25% of CHF patients.
The increase in CHF has inspired researchers to look for new ways to treat this disease, leading to the development of drugs, surgical procedures and mechanical pumps to assist heart function, which either prevent or at least delay progression of the condition. One such approach involves implantation of an artificial heart, comprising, a diaphragm pump, an example of which is described in U.S. Pat. No. 4,468,177. The pump disclosed in this patent comprises two chambers which are driven in a “push-pull” manner so that the volumes of each of the two chambers are alternatively enlarged and reduced and, further, both chambers are in the path of fluid through the pump. However the use of this, or a similar, pump arrangement for total heart replacement or heart assistance would require an extremely reliable, durable and portable power supply. Although mechanical pumps have been constructed and tested, they have not been found to be adequate for long-term treatment of heart failure.
Chronic heart failure is characterized by changes in the biochemical composition of the ventricular wall, the orientation of cardiac muscle fibers, and the geometry of the ventricular chamber. Remodeling is the term commonly used to describe these facets of cardiac adaptation in disease. While some aspects of the remodeling process may be beneficial to overall heart function to this disease, other aspects are likely to be maladaptive over extended periods. One notable maladaptive aspect of remodeling is left ventricular dilation, which is characterized not only by an increase in ventricular end diastolic volume but also by shifts of the end diastolic pressure volume relation toward larger volumes. Ventricular dilation increases wall stress and imparts mechanical disadvantage to the myofibrils; therefore, it is a critical event in the disease process.
A decrease in the internal volume of the damaged left ventricle will increase its efficiency because the amount of oxygen consumed by the myocardial muscle as it pumps is related to the wall tension developed during ventricular contraction. The wall tension, in turn, is proportional to the fourth power of the diameter of the ventricular cavity. Therefore, at a given smaller diameter, less work will be used by the muscle to pump a given volume of blood against a given pressure.
Cardiac output has been improved surgically by reducing the volume of a diseased left ventricle. Removal of the non-functioning aneurysmatic segment of the heart muscle has improved the hemodynamic situation by changing the geometry of the left ventricle, leading to enhanced cardiac output. However, this procedure, generally referred to as the Batista technique, is associated with considerable operative risk.
An improvement upon this operation is disclosed in U.S. Pat. No. 5,738,626. In this modified surgical procedure, which includes elements of the other approaches as well, the dilated left ventricle is first reduced in size via myocardial resection and then the heart is supported and assisted by the attachment of a cardiomyoplasty muscle wrap. Cardiomyoplasty is a term used to describe a procedure in which the sheetlike latissimus dorsi muscle is mobilized (while maintaining its vascular supply) and inserted into the mediastinum through a lateral thoracotomy. After pericardiectomy, the muscle is wrapped around both the left and right ventricles. Several weeks are provided for surgical recovery and electrical muscle conditioning, and thereafter the muscle is paced by burst stimulation synchronized to every other cardiac systole. Chronic repetitive stimulation induces biochemical and physiological transformations in the muscle, altering its characteristics toward those of cardiac muscle. These changes include fatigue resistance, prolonged contraction duration, diminution in size, and reduced maximal power.
The principal mechanism by which cardiomyoplasty has been assumed to assist the failing heart is augmentation of systolic ejection by active squeezing of the ventricles. While human studies have reported improvement in the clinical symptoms of patients undergoing this therapy, evidence for active systolic assist has been inconsistent. The results have led some to speculate that more passive external constraining effects of the muscle wrap maybe a source of benefit.
Surgical modes of intervention for the treatment of heart failure include: stiffening zones of acute infarction, for example by directly injecting glutaraldehyde into the affected tissue; wrapping a skeletal muscle (stimulated electrically) around the heart to augment ventricular contractility; and applying an epicardial marlex mesh to support the weakened and distended left ventricle.
A disadvantage common to cardiomyoplasty procedures, which is a consequence of the use of skeletal muscle as the ventricular wrap, is that the tissue wrap fatigues upon repeated stimulation at normal heart rates. Therefore, a period of time exceeding several weeks is required after this operation to condition the skeletal muscle, transforming it into a different tissue, rich in mitochondria and adapted to withstand the repeated stimulation with much less fatigue. During this period a ventricular assist pump may be implanted within a hole cut in the ventricle. Eventually, this assist pump will be removed.
Today, ventricular assist devices (VAD) designed to support a failing heart, represents the most important device technology for treating CHF. These devices are manufactured by Thermocardiosystems (TCS: Woburn, USA), Thoratec (Berkeley, USA), Abiomed (Danvers, USA), and Novacor (Santa Ana, USA).
Some heart remodeling techniques are also under development. Cardio Technologies (Pine Brook, N.J.) is developing a cardiosupport system, that acts via direct mechanical ventricular activation which mimics open chest resuscitation. The device squeezes the heart by applying pressure to a cup-like component placed around the heart.
Acorn Cardiovascular (New Brighton, Minn., USA) envisions a completely new technology for the treatment of CHF. The company is developing a passive device made of biocompatible materials that is placed around the heart via minimally invasive surgical techniques. The device is able to reduce the size, preventing the heart from enlarging further. Unlike surgical reduction techniques (Batista techniques), the product does not require the removal of any heart muscle.
Additional developments are illustrated in the following patents.
U.S. Pat. No. 5,749,8
Blanco Paul D.
Fleit Martin
Fleit Kain Gibbons Gutman Bongini & Blanco
Veniaminov Nikita R
Winakur Eric F.
LandOfFree
Modification of properties and geometry of heart tissue to... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modification of properties and geometry of heart tissue to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modification of properties and geometry of heart tissue to... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3321558