Modification of DNA and oligonucleotides using metal complexes o

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

514185, 536 2533, C12Q 168

Patent

active

052720560

DESCRIPTION:

BRIEF SUMMARY
,15 N? 14?
A kit is also provided for a nucleic acid assay for locating guanine groups in nucleic acids, oligonucleotides, polynucleotides, RNA and single-stranded DNA, and non-base paired guanine groups in double-stranded DNA. The kit comprises a polyaza metal complex selected from Structures I-III and their derivatives, an oxidant selected from the group consisting of peracid, hypochlorite, O.sub.2, peroxide in combination with ascorbate, O.sub.2 in combination with ascorbate, and a base of piperidine, N-butylamine or sodium hydroxide. The detection, for example, of labelled 5'-ends in base-cleaved oligonucleotide indicates the position of guanine groups in the oligonucleotide.
A method is also provided for treating neoplastic growth comprising administering to a subject having a neoplastic growth, an effective amount of a polyaza metal complex of Structures I-III and their derivatives.
Advantageously, the process provides a new method for guanine-specific modification of DNA in sequencing technology and in therapeutics. In addition, the currently used chemical sequencing methods use volatile and toxic chemicals such as dimethylsulfate. The invention employs less toxic materials which are more easily handled.
For a better understanding of the present invention, together with other and further objects, reference is made to the following description, taken together with the accompanying drawings and its scope will be pointed out in the appended claims.


BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an autoradiogram of an electrophoresis of a polyacrylamide gel showing oligonucleotide cleavage products obtained using structure 1 with an oxidant and base treatment compared with control studies;
FIG. 2 is an autoradiogram of an electrophoresis of a polyacrylamide gel comparing efficacy of various metal complexes in the cleavage of the oligonucleotide.


DETAILED DESCRIPTION OF THE INVENTION



Polyaza Compounds

The compounds useful in the invention are characterized in one regard by their ability to form stable complexes with transition metals. Stable complexes are those having measurable lifetimes at room temperature in water or common organic solvents.
The compounds comprise at least one ligand and a transition metal. A ligand is defined herein as a molecule that is attached to the central metal atom of a coordination compound. Preferred ligands are tetradentate or pentadentate and may comprise either macrocyclic or non-macrocyclic molecules. Other ligands, however, can also be used. It is to be understood that a tetradentate ligand has four donor atoms while a pentadentate ligand has five donor atoms.
The donor atoms may be nitrogen, oxygen, and/or sulfur. Preferably at least two donor atoms are nitrogens, which are separated by from two to four carbon atoms.
Suitable nitrogen donor groups are the amino group of peptides, or amines, imines, pyridines, imidazoles, pyrroles, and pyrazoles, with imine and pyridine groups preferred. The configuration may be square planar or pyramidal, with square planar preferred, but is not limited to these. Suitable oxygen donor groups are phenol, alcohol, carboxylic acid, and carbonyl. Examples of molecules containing oxygen donor groups are salens, salophens and crown thio ethers. Generally, crown ethers containing only oxygen donor groups are not suitable herein. Sulfur donor groups may be, e.g. thiols, thiolates and thiophenols. Complexing molecules containing sulfur groups may contain only sulfur donor groups such as in the crown thio ethers, or the sulfur groups may be combined with oxygen and/or nitrogen donor groups in a suitable ligand.
The ability of the ligands to form stable complexes results from the relative positions of the donor groups. Much of the rest of the ligand consists of carbon atoms that may be thought of as collectively forming a scaffold for maintaining the proper position of the donor groups.
Substituents on the atoms of the ligand affect the properties of the compounds, such as their ability to bind the nucleotides and DNA, their effectiveness i

REFERENCES:
patent: 4980473 (1990-12-01), Barton
patent: 4987227 (1991-01-01), Burrows et al.
R. Hertzberg et al., J. Am. Chem. Soc., vol. 104, pp. 313-315 (1982).
Kasprzak, K., et al., "Enhancement of Hydroxylation and Deglycosylation of 2'-Deoxyguanosine by Carcinogenic Nickel Compounds", Cancer Research 49, 5964-5968 (Nov. 1, 1989).
Kawanishi, S., et al., "Site Specific DNA Damage Induced by Nickel (II) Ion in the Presence of Hydrogen Peroxide", Carcinogenesis 10, 2231-2235 (1989).
Tullius, T. D., Ed., Metal-DNA Chemistry, ACS Symposium Series 402, American Chemistry Society, Washington, D.C. (1989).
M. B. Fleisher, et al., "Metal Complexes Which Target DNASites: Coupling Recognition to Reactivity," Nucl. Acids Mol. Biol. 2, 65-84 (1988).
Frantz, B., et al., "Inorganic Reagents as Probes for the Mechanism of a Metal-Responsive Genetic Switch," Metal-DNA Chemistry, Tullis, T. D., Ed., ACS Symposium Series 402, American Chemical Society, Washington, D.C. 65-84 (1989).
Dervan, P., "Design of Sequence--Specific DNA-Binding Molecules," Science 232, 464-471 (1986).
Sigman, D. S., "Chemical Nucleases," Biochemistry 29, 9097-9105 (1990).
Dreyer, G. T., et al., "Sequence-Specific Cleavage of Single-stranded DNA: Oligodeoxynucleotide-EDTA-Fe(II)," Proc. Nat. Acad. Sci USA 82, 968-972 (1985).
Van Atta, R. B., et al., "On the Chemical Nature of DNA and RNA Modification by a Hemin Model," Biochemistry 29, 4783-4789 (1990).
Barton, J. K., "Metals and DNA: Molecular Left-Handed Complements," Science 233, 727-734 (1986).
Stubbe, J., et al., "Mechanisms of Bleomycin--Induced DNA Degradation," Chem. Rev. 87, 1107-1136 (1987).
Sherman, S. E., et al., "Structural Aspects of Platinum Anticancer Drug Interactions with DNA", Chem. Rev. 87, 1153-1181 (1987).
Maxam, A. M., et al., "A New Method for Sequencing DNA," Proc. Nat. Acad. Sci. USA 74, 560-564 (1977).
Mack, D. P., et al., "Nickel-Mediated Sequence-Specific Oxidative Cleavage of DNA by a Designed Metalloprotein," J. Am. Chem. Soc. 112, 4604-4606 (1990).
Yoon, H., et al., "Catalysis of Alkene Oxidation by Nickel Salem Complexes Using NaOCl Under Phase-Transfer Conditions," J. Am. Chem. Soc. 110, 4087-4089 (1988).
Karn, J. L., et al., "Nickel(II) Complexes of the Tetradentate Macrocycle 2, 12-Dimethyl-3,7,11,17-Tetrazabicyclo (11.3.1) Heptadeca--1 (17), 2,11,13,15-Pentaene," Nature 211, 160, 162 (1966).
Busch, D. H., "Distinctive Coordination Chemistry and Biological Significance of Complexes with Macrocyclic Ligands," Acc. Chem. Res. 11, 392-400 (1978).
Tait, A. M., et al., "2,3-Dimethyl-1,4,8,11-Tetraazacyclo-tetradeca-1,3-Diene (2,3-Me.sub.2 [14]-1,3-diene-1, 4, 8, 11-N.sub.4) Complexes," Inorg. Synth. 18, 27-29 (1978).
Cummings, S. C., et al., "A New Synthetic Route to Macrocyclic Nickel(II) Complexes with Uninegative, Schiff-Base Ligands," Inorg. Chem. 9, 1131-1136 (1970).
Smierciak, R., et al., "A Comparative Study of Steric Effects of Nickel(II) Complexes Containing 12-Membered Macrocyclic Ligands," Inorg. Chem. 16, 2646-2648 (1977).
Jorgensen, K., "Comparative Crystal Field Studies II. Nickel(II) and Copper(II) Complexes with Polydentate Ligands and the Behavior of the Residual Places for Co-Ordination," Acta Chemica Scand. 10, 887-910 (1956).
Wagle
This invention was made with government support under grant number CHE 9006684 awarded by the National Science Foundation. The government has certain rights in the invention.
The invention relates to the modification of nucleic acids by oxidation using metal complexes of polyaza ligands.
The technique of irreversible DNA modification holds great potential as an in vitro tool for molecular biologists. Such modification raises the possibility of DNA - directed drug therapy in vivo. Currently prescribed chemotherapeutic agents acting at the level of DNA are often effective, but their therapeutic index is poor, limited by the lack of target specificity.
Naturally-occurring and laboratory-designed agents for DNA modification have often relied on transition metal ions for nu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modification of DNA and oligonucleotides using metal complexes o does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modification of DNA and oligonucleotides using metal complexes o, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modification of DNA and oligonucleotides using metal complexes o will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-308287

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.