Modeling viscoelastic torsional properties of osteons

Data processing: structural design – modeling – simulation – and em – Simulating nonelectrical device or system – Biological or biochemical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S449000, C600S586000, C623S023510, C623S023560

Reexamination Certificate

active

07127383

ABSTRACT:
The present invention provides a geometric/material computer model of hierarchical bone based upon the viscoelastic properties of longitudinal and alternate osteons. The viscoelastic properties of osteons include, for example, mechanical properties and osteon content of various components such as collagen, mucopolysacharides, hydroxyapatite, osteocytes and osteoblasts. The invention also provides a method for preparing such a model.

REFERENCES:
patent: 5732469 (1998-03-01), Hamamoto et al.
patent: 5947893 (1999-09-01), Agrawal et al.
patent: 6213958 (2001-04-01), Winder
patent: 6293970 (2001-09-01), Wolfinbarger, Jr. et al.
patent: 6333313 (2001-12-01), Copland, III et al.
patent: 6416737 (2002-07-01), Manolagas et al.
patent: 6442287 (2002-08-01), Jiang et al.
R. Lakes, “Materials with structural hierarchy”, Nature 361, Feb. 1993).
Amprino, R. and Engström, A. (1952) Studies on X-ray absorption and diffraction of bone tissue. Acta Anat, 15, 1-22.
Ascenzi, M.-G. (2000) National Science Foundation grant description.
Ascenzi, M.-G.. Benvenuti, A., and Ascenzi, A. (2000) Single osteon micromechanical testing. In: Mechanical testing of bone (An Y. and Draughn R. eds), CRC Press, Boca Raton, Florida.
Ascenzi, M.-G. (1999a) Evidence of macroscopic prestress in human femoral shaft, Abstracts of the XVIIth conference of the International Society of Biomechanics, Calgary.
Ascenzi, M.-G. (1999b) A first estimation of prestress in so-called circularly fibered osteonic lamellae, J. Biomech., 32, 935.
Ascenzi, M.-G. (1998a) A first estimate of prestress in so-called circularly fibered osteonic lamellae, Abstracts of the 11th conference of the European Society of Biomechanics, J. Biomech., 31, Suppl. l, 22.
Ascenzi, A., Benvenuti, A., Bigi, A., Foresti, E., Koch, M.H.J., Mango, F., Ripamonti, A., and Roveri, N. (1998) X-ray diffraction on cyclically loaded osteons. Calc. Tissue Int., 62:266-273.
Ascenzi, A., Ascenzi M. G., Benvenuti, A., and Mango, F. (1997) Pinching in longitudinal and alternate osteons during cyclic loading. J. Biomechanics, 30, 689-695.
Ascenzi, A., Baschieri P., and Benvenuti, A. (1994) The torsional properties of single selected osteons. J. Biomech., 27, 875-884.
Ascenzi, A., Baschieri P., and Benvenuti, A. (1990) The bending properties of single osteons. J. Biomech., 23, 763-771.
Ascenzi, A. (1988) The micromechanics versus the macromechanics of cortical bone-A comprehensive presentation. J. Biomech. Eng., 110, 357-363.
Ascenzi, A., Boyde, A., Portigliatti-Barbos, M. and Carando, S. (1987a) Micro-biomechanics vs Macrobiomechanics in cortical bone. A micromechanical investigation of femurs deformed by bending. J. Biomech., 20, 1045-1053.
Ascenzi, A., Benvenuti, A., Mango, F. and Simili, R. (1985) Mechanical hysteresis loops from single osteons: Technical devices and preliminary results, J. Biomech., 18, 391-398.
Ascenzi, A. and Bonucci, E. (1972) The shearing properties of single osteons. Anat. Rec., 172, 499-510.
Ascenzi, A. and Bonucci, E. (1968) The compressive properties of single osteons. Anat. Rec., 161, 377-392.
Ascenzi, A. and Bonucci, E. (1967) The tensile properties of single osteons. Anat. Rec., 158, 375-386.
Boyde, A., Bianco, P., Portigliatti-Barbos, M. and Ascenzi, A. (1984) Collagen Orientation in compact bone: 1. A new method for the determination of the proportion of collagen parallel to the plane of compact bone sections, Metab. Bone Dis. & Rel. Res., 5, 299-307.
Carter, D.R., Caler, W.E., Spengler, D. M., and Frankel, V. H. (1981), Fatigue behavior of adult cortical bone: The influence of mean strin and strain range., Acta Orthop. Scand., 52, 481-490.
Cook, J. and Gordon, J. E. (1964) A mechanism for the control of crack propagation in all brittle systems. Proc. R. Soc. Lond., Ser. A, 282, 508-520.
Crolet J.-M., Aoubiza, B. and Meunier, A. (1993) Compact bone: numerical simulation of mechanical characteristics. J. Biomech., 26, 677-687.
Currey, J.D. (1959) Differences in tensile strength of bone of different hystological types. J. Anat., 93, 87-95.
Evans, F.G. and Vincentelli, R. (1969) Relation of collagen fiber orientation to some mechanical properties of human cortical bone. J. Biomech., 2, 63-71.
Frasca, P., Harper, R. and Katz, J. (1981) Strain and frequency dependence of shear storage modulus for human single osteons and cortical bone microsamples-size and hydration effects. J. Biomech, 14, 679-690.
Frasca, P., Harper, R. and Katz, J. (1977) Collagen fiber orientation in human secondary osteons. Acta Anat., 98, 1-13.
Giraud-Guille, M. M. (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calc. Tissue Int., 42, 167-180.
Gupta, V., and Bergström, J.S. (1998) Compressive failure of rocks by shear faulting. J. of Geoph. Res. 103, 23, 875-23,895.
Hert J., Fiala P. and Petrtyl M. (1994) Osteon orientation of the diaphysis of the long bones in man. Bone, 15, 269-277.
Huja, S.S., Hasan, M.S., Pidaparti, R., Turner, C.H., Garetto, L.P. and Burr, D. (1999) Development of a fluorescent light technique for evaluating microdamage in done subjected to fatigue loading. J. Biomech., 32, 1243-1249.
Jepsen, K. J., Davy, D.T. and Krzypow, D. J. (1999) The role of the lamellar interface during torsional yielding of human cortical bone. J. Biomech., 32, 303-310.
Katz, J. L. and Meunier, A. (1987) The elastic anisotropy of bone. J. Biomech., 20, 1063-1070.
Katz, J. L. and Ukraincik, K. (1971) On the anisotropic elastic properties of hydroxyapatite. J. Biomech., 4, 221-227.
Lakes, R. (1995) On the torsional properties of single osteons, J. Biomech., 28, 1409-1410.
Martens, M., van Audekercke, R., de Meester, P. and Mulier, J. (1980) The mechanical characteristics of the long bones of the lower extremity in torsional loading. J. Biomech., 13, 667-676.
Pidaparti, R. and Burr D. (1992) Collagen fiber orientation and geometry effects on the mechanical properties of secondary osteons. J. Biomech., 25, 869-880.
Piekarski, K. (1970) Fracture of bone. J. Appl. Physics, 41, 215-223.
Portigliatti-Barbos, M., Bianco, P. and Ascenzi, A. (1983) Distribution of osteonic and interstitial components in the human femoral shaft with reference to structure, calcification, and mechanical properties. Acta Anat., 115, 178-186.
Portigliatti-Barbos, M., Bianco, P., Ascenzi, A. and Boyde, A. (1984) Collagen orientation in compact bone: II. Distribution of lamellae in the whole of the human femoral shaft with reference to its mechanical properties. Metab. Bone Dis. & Rel. Res., 5, 309-315.
Portigliatti-Barbos, M., Carando, S., Ascenzi, A. and Boyde, A. (1987) On the structural symmetry of human femurs, Bone, 8, 165-169.
Rho, J.Y., Zioupos, P., Currey, J.D., and Pharr ,G. M. (1999) Variations in the individual thick lamellar properties within osteons by nanoindentation, Bone, 25, 295-300.
Sasaki N. (2000) Viscoelastic properties of bone and testing methods. In: Mechanical testing of bone (An Y. and Draughn R. eds), CRC Press, Boca Raton, Florida.
Simkin, A., and Robin,G. (1974) Fracture formation in differing collagen fiber pattern of compact bone. J. Biomech., 7, 183-188.
Vincentelli, R. and Evans, F. G. (1971) Relations among mechanical properties, collagen fibers, and calcification in adult human cortical bone. J. Biomech., 4, 193-201.
Ascenzi, A., et al., (1987b) Distribution of Lamellae in Human Femoral Shafts Deformed by Bending with Interferences on Mechanical Properties. Bone, 8:319-325.
Ascenzi, A., and Benvenuti, A., (1980) Evidence of a state of initial stress in osteonic lamellae. Acta Orthop. Belg., 46:580-583.
Carando, S., et al., (1991) Macroscopic shape of, and lamellar distribution within, the upper limb shafts, allowing interferences about mechanical properties. Bone, 12:265-269.
Carando, S., (1989) Orientation of collagen in human tibial and fibular shaft and possible correlation with mechanical properties. Bone, 10:139-142.
Currey, J.D. (1969) The relationship between the stiffness arid the mineral content of bone. J. Biomechanics, 2:477-480.
Marotti, G., et al., (1994) Structure and function of lamellar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modeling viscoelastic torsional properties of osteons does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modeling viscoelastic torsional properties of osteons, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modeling viscoelastic torsional properties of osteons will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3669934

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.