Model car with tilt and lift suspension

Amusement devices: toys – Rolling or tumbling – Wheeled vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C446S456000, C446S465000

Reexamination Certificate

active

06620023

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to model vehicles. More specifically, the present invention relates to remote controlled model cars with controllable suspension position and suspension action.
2. Description of the Related Art
Model cars, trucks, and other vehicles are produced in a variety of sizes and configurations. Models are used for display, demonstration, research, marketing, recreational, and many other applications. One popular form of models is the remotely controlled model. Remote control is typically implemented through radio transmissions, cable interconnections, or infrared light beams. Within the model are motors and servomotor controllers (called “servos”) that motivate and articulate the model. These actions produce forward and reverse motion, steering, and other actions within such models.
Model vehicles commonly mimic full size, or real, vehicles in their scale, function, and application. Although, it is also common to see model vehicles designed with futuristic, fictitious, or even fantasy designs. The vehicle used as the reference design may be thought of as an exemplar for the model vehicle. In the case of remote controlled model vehicles that are used for recreational activities, designers are continually seeking new and appealing designs so as to stimulate interest in such models. For example, in the case of a popular movie that features a fantasy vehicle prop, it is not uncommon for designers of model vehicles to style a product in accordance with the movie prop. Another example is the case where model designers refer to the latest products produced by the automotive industry as exemplars. Similarly, competitive racing vehicles are sometimes used as exemplars for remote control models. Popular culture and the after market auto industry also produce creatively modified vehicles that can be exemplars.
The after market automotive parts industry and the popular culture have produced certain modified vehicles that employ hydraulic power to allow the user to dynamically configure the vehicle suspension so that the body of the vehicle can be placed in a variety of unusual positions. This technique is commonly referred to as “hydraulics”. In application, a hydraulic pump is driven by the vehicle's engine or an electric motor powered by batteries and the hydraulic power produced is used to drive hydraulic actuators through a hydraulic valve body. The hydraulic actuators are linked to the vehicle suspension, typically at the four wheel anchor locations. By actuation of controls on the hydraulic valve body, the hydraulic actuators adjust the suspension height at one or more of the four wheels so that the vehicle can be raised, lower, or tilted in a variety of configurations.
From a marketing perspective, it is desirable to produce a remote controlled model that employs the hydraulics used in the popular culture. However, this is problematic as the cost and complexity of scaling a hydraulic system to a model vehicle is very high. Thus, there is a need in the art for a remote controlled vehicle that mimics the “hydraulic” functions seen in the popular culture.
SUMMARY OF THE INVENTION
The need in the art is addressed by the apparatuses of the present invention. A first illustrative embodiment teaches a model vehicle having a suspension operable to vary the lift of the vehicle which closely emulates the “hydraulic” lift associated with full size motored vehicles. The apparatus includes a chassis and a lift carriage that are rotatably coupled together about a laterally aligned lift axis. Also, a wheel axle rotatably supported by the lift carriage and oriented parallel to the lift axis, and a lift actuator coupled to the chassis and the lift carriage, such that actuation varies the angle of rotation of the lift carriage. The rotation causes the chassis to lift up and down with respect to the wheels attached to the wheel axle, that naturally rest on firm ground.
The foregoing apparatus is improved upon wherein the lift actuator further includes a cam follower and a motor driven cam aligned to rotatably engage the cam follower, thereby producing an oscillating rotation about the lift axis when the motor operates. In another refinement to this, the cam has an eccentric shape. In a further refinement, a remote control receiver is coupled to energize the motor driven cam upon receipt of a lift command. In a further refinement, the apparatus includes a remote control unit that has a lift input actuator, such as a push button, coupled to a remote control transmitter, such that actuation of the lift input actuator causes the transmitter to transmit a lift command to the remote control receiver. In a further refinement, the remote control transmitter transmits the lift command by radio signal. In a further refinement, the apparatus further includes a spring disposed between the chassis and the lift carriage, which is arranged to urge rotation about the lift axis in opposition to rotation by the lift actuator.
In another illustrative embodiment of the present invention a model vehicle has a suspension that operates to vary the tilt of the vehicle, which emulates the tilting action imparted to full size vehicles that employ “hydraulics”. In this embodiment, the apparatus includes a chassis and a tilt carriage that is rotatably coupled to the chassis about a longitudinally aligned tilt axis. Also, a wheel axle rotatably supported by the tilt carriage and oriented perpendicularly with respect to the tilt axis, and, a tilt actuator coupled to the chassis and the tilt carriage, such that actuation varies the angle of rotation of the tilt carriage. This causes the chassis to tilt left or tilt right with respect to the wheels and ground.
In a refinement to the foregoing apparatus, the tilt carriage is rotatably coupled to the chassis by a combination tilt bearing and tilt shaft. In a further refinement, the tilt actuator is a servo coupled to the chassis and the tilt carriage that operates to impart rotation about the tilt axis. In a further refinement, the apparatus further includes a remote control receiver coupled to control the tilt servo upon receipt of a tilt commands. In a further refinement, the apparatus also includes a remote control unit that has a first tilt input actuator coupled to a remote control transmitter, and arranged such that actuation of the first tilt input actuator causes the transmitter to transmit a first tilt command. In a further refinement, the remote control transmitter transmits the tilt commands by radio signal. In a further refinement, the first tilt command causes the tilt servo to rotate in a first direction, such as the clockwise direction. And, the remote control transmitter further includes a second input tilt actuator coupled to the remote control transmitter, such that actuation of the second tilt input actuator causes the transmitter to transmit a second tilt command. The second tilt command causes the servo to rotate in a second direction, such as the counter-clockwise direction. In a further refinement, the chassis has a guide slot arcuately formed into it at a constant distance from the tilt axis, and the tilt carriage has a guide boss that extends to rotatably engage the guide slot.
Another illustrative embodiment of the present invention combines the lift and tilt actions to teach a very realistic and complex lift and tilt capability, as in full size vehicles the employ “hydraulics”. The apparatus of this embodiment includes a chassis and a sub-chassis. The sub-chassis defines a first axis aligned substantially perpendicular to a second axis. It also includes a rotatable coupling between the chassis and the sub-chassis aligned with the first axis, and a first actuator coupled to the chassis and the sub-chassis. Actuation of the first actuator varies the angle of rotation of the sub-chassis about the first axis. The apparatus also includes a wheel carriage that is rotatably coupled to the sub-chassis about the second axis. Also, a second actuator coupled to the sub-chassis and the w

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Model car with tilt and lift suspension does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Model car with tilt and lift suspension, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Model car with tilt and lift suspension will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3054128

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.