Mobile transmission antenna

Communications: radio wave antennas – Antennas – With vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C343S711000, C343S712000

Reexamination Certificate

active

06614402

ABSTRACT:

BACKGROUND
The invention relates to a mobile radio antenna having at least one monopole for motor vehicles.
Such mobile radio antenna designed for sending and receiving high-frequency signals in the frequency range between 0.8 and 1.9 GHz are known from practice in various embodiments as rod or integrated antennas, for example as car telephone antennas.
Rod radiators, such as those used especially as quarter-wavelength or short, thick monopoles (“stub antennas”) on the car roof, or such as so-called “on-glass” antennas used for cementing to the car windows, such as the back window, not only undesirably suggest that the car is equipped with a mobile telephone, but they also are accessible for vandalism. To avoid damage in car-washes these antennas are usually made unscrewable and thus are to a great extent liable to theft.
In on-glass antennas, furthermore, due to the production of undesired horizontally polarized field components created by the connecting cable during transmission, an often unreasonable electromagnetic field is produced in the car interior by the usual transmission power of up to eight watts which often is unacceptable. This disadvantage exists even by mobile radio antennas integrated into car windows, in which the antenna design is either applied to the windshield or is sandwiched between the laminations in safety glass.
In on-glass antennas, furthermore, often the necessary electrical counterpoint is not assured, especially when the ground connection is made through the cable without an additional ground surface. Integrated car radio antennas for nonconductive body parts are known not only as window antennas, but even in the case of plastic fenders their use requires an appropriate shape of the fenders, which is not provided in every vehicle. For the at least approximate production of an all-around radiation diagram which is always desirable, two antenna probes arranged at the lateral corners of the fender are necessary. Lastly, this embodiment of the mobile radio antenna is not always best, not only on account of the low height of the mounting location but also on account of the accident-prone exposed location.
SUMMARY OF THE INVENTION
The invention is therefore addressed to the problem of creating a mobile radio antenna of the kind described above, in which the harmful radiation into the car interior during transmission will be minimized and at the same time the danger of vandalism and theft will be reduced in a simple and cost-effective manner.
This problem is solved by the distinctive features of the present invention. By means of the reflector a directional action is produced with little trouble, and due to the arrangement specified the main lobe of the directional diagram points away from the vehicle. Thus radiation into the car interior is possible only from the rear side lobe of this directional diagram, and thus it is greatly reduced. The direction and magnitude (damping) of this side lobe are furthermore easily adaptable to the geometrical circumstances of the vehicle by an appropriate configuration and arrangement of the reflector relative to the monopole. In the case of the preferred mounting in the passenger compartment, the car radio antenna has also a height above the ground that is sufficient for the effectively received and transmitted power that is desired.
Advantageous embodiments and further developments of the mobile radio antenna according to the invention are described in the subordinate claims.
Thus it is at the same time especially desirable for the mounting as well as the preparation and storage to make the monopole and reflector not as separate parts but as a single unit.
If this unit is disposed near the edge of the car roof in cars with a metal roof, its excitation for the actual radiation of the signal energy and for reception will produce in general a desirable all-around radiation characteristic.
Depending on the requirements of the individual case the reflector can be variously configured. In the simplest case it consists of a flat conductive surface whose size is governed substantially by the working frequency range. With a domed configuration of the reflector, however, a greater side lobe damping and a more compact construction is possible in a simple, if slightly more expensive manner. Doming is necessary only in the horizontal plane, because the desired signals in the mobile radio bands are exclusively vertically polarized.
An especially advantageous embodiment of such a mobile radio antenna is characterized by a very compact and mechanically stable construction providing still greater shielding against the radiation of transmitted energy into the vehicle interior. The back wall then constitutes the actual reflector. Since the rod-like monopole attains on the one hand the desired length of about a quarter wavelength and on the other hand fits within the shovel-shaped part, it not only has vertical emission characteristics but also horizontal ones. The undesired horizontal component of the electromagnetic field produced by the latter is minimized by the bottom and the side walls. The wave formation takes place between the monopole and the bottom, the latter forming the counterpoise of the antenna. The antenna terminal is on the back or bottom of the device and is in the form of a coaxial connector to which a coaxial line to the transmitter or receiver can be connected.
A wedge-shaped configuration of the antenna provides for the application most frequent in practice, namely installation on the sloping surfaces of the rear window or windshield of motor vehicles, by equalizing the slope of the surface and aligning the vertical monopole parts vertically even after installation, so that the antenna pattern has the required orientation.
An improvement of the radiation properties of the mobile radio antenna according to the invention is achieved according to claim
8
by avoiding sharp edges at the transitions between the individual surfaces and thus avoiding undesired parasitic interfering effects.
Another important advantage consists in filling with a dielectric the space between the monopole and the reflector or—in the case of an alternative embodiment—the space surrounded by the shovel-shaped part. A substantial reduction of the size of the antenna and thus also a reduction of visual interference in the case of windshield mounting can thus be obtained. By the appropriate selection of the dielectric constants the antenna can also be adapted in a simple manner to the requirements or spatial circumstances of the individual case. Furthermore, it results in an extremely robust mechanical construction, wherein the monopole is stable in position and protectively embedded.
According to another advantageous embodiment of the mobile radio antenna of the invention, the monopole is arranged along the opening surface of the shovel-shaped part, that is, in cross section, along the hypotenuse of this part, so that in this longest part of the wedge it reliably has the desired length of about a quarter wavelength even at frequencies in the lowest working frequency range.
Instead of a straight rod antenna, a bent configuration of the monopole can be selected, with the advantage that the antenna terminal in the bottom can be freely chosen within limits and thus can be located so as to correspond to the space conditions in different vehicles.
Various advantageous alternatives are described for mounting the mobile radio antenna. It can either be permanent (glued, for example) or removable—say, by mounting the antenna with screws. It is especially advantageous to integrate the antenna into a fixedly disposed device provided for other purposes, as for example in a third brake light mounted at the upper margin of the back window of the car because in this case the antenna needs neither additional space nor special mounting means. Moreover, the routing of wiring is reduced, thereby lowering production costs.
In the case of an opaque dielectric, to enable both the mobile radio antenna and the third brake light to serve their purpose, the two devices

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mobile transmission antenna does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mobile transmission antenna, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mobile transmission antenna will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3108363

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.