Mobile-trailer tracking system and method

Data processing: vehicles – navigation – and relative location – Navigation – Employing position determining equipment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S993000, C342S027000

Reexamination Certificate

active

06687609

ABSTRACT:

The present invention relates generally to vehicle tracking systems, and in particular, to a tracking system for mobile trailers that maintains location and tractor coupling information for a fleet of mobile trailers.
BACKGROUND OF THE INVENTION
Transportation of cargo via tractor-trailers is an important part of worldwide commerce. (In this context, a “tractor” is a reference to a highway truck, such as a semi-truck). The complex and large-scale operations of tractor-trailer fleet owners dictate that the owners keep track of the status and general location of their vehicles as accurately as possible. This facilitates, among other things, efficient allocation of pick-up and delivery of goods, increased equipment utilization, effective maintenance scheduling, improved cargo security, decreased asset losses, and rapid assistance for vehicles in need of repair or help. The advent of the Global Positioning System (“GPS”) has greatly assisted these efforts, as geographic location can now be pinpointed within a number of meters, allowing position information for vehicles to be accurately determined. Coupled with a method of reporting a current location for a vehicle, a GPS-based tracking system can provide the kind of centralized tracking and management that fleet owners need, particularly when thousands of vehicles must be tracked.
Numerous systems exist to provide continuous tracking of highway tractors. These tractor-tracking systems include, for example, the “OmniTRACS” system from Qualcomm, the Orbcomm data messaging system from Orbcomm company, and the Motient/Norcomm vehicle tracking system. They typically include a GPS system and a satellite-based data messaging system (and, optionally, other sensors and control relays). Messages, including the location of the tractor, are communicated between the tractor and a central office through the satellite-based system. Other systems use cellular-based systems for communications and data messaging. These systems are generally only effective in urban areas or along highways having cellular telephone coverage.
Generally, tractor-tracking systems are not useful or effective for directly tracking mobile trailers. This is because tractor-tracking systems lack any automatic mechanism to identify or monitor trailers, instead requiring an operator to manually input trailer data. As a result, the visibility of a trailer's location is lost once the trailer is disconnected from the reporting tractor. Additionally, it is not practical to simply install the tractor-tracking systems directly on the mobile trailers. This is because trailers generally only have power when connected to a tractor, and therefore do not have the necessary power source to operate a tractor-tracking system (used here for trailer-tracking) independent of the tractor. It takes a considerable amount of power to communicate with satellites orbiting 22,500 miles above the earth, like the satellites used for Qualcomm's OmniTracs system.
Some companies do offer untethered trailer-tracking systems, however. (An “untethered” trailer is a trailer that is not hooked, or does not need to be hooked, to a tractor's power supply.) For example, Orbcomm's LEO trailer-tracking system relies upon Low Earth-Orbit satellites for communications. Because LEO satellites are closer to the ground (e.g., 500 miles), less complex and less powerful antennas and communicators can be used to talk to these satellites than with traditional geostationary satellites. Similarly, cellular-based modem systems require less power than traditional satellite-based systems and can be used for untethered trailers, although they lack the coverage of the full-scale tractor-tracking systems. For example, Qualcomm's TrailerTracs product relies upon a cellular-based system for untethered trailer communication.
Both of these types of untethered trailer-tracking systems rely upon battery power for untethered trailer communications. Their power requirements are substantial. For example, communicating with the Orbcomm LEO satellites consumes power at a rate of almost 6 watts, while a cellular-based modem uses power at a rate of almost 600 mW. At these power levels, batteries can be drained very quickly, limiting the usefulness of such systems. Also, the large power demands placed on the batteries requires that the batteries be serviced often and replaced frequently, and makes the batteries particularly susceptible to failure. These types of systems generally do not communicate with the tractor itself, and therefore cannot provide specific tractor identification and coupling information, other than a basic “tractor hooked” determination.
Thus, it would be desirable to provide a trailer-tracking system that can provide automatic tracking of mobile trailers, but without the substantial power requirements of a tractor-based communications system.
Another important issue to tractor-trailer fleet owners is the ability to monitor trailer-yard inventory. When trailers are not in use, they are commonly stored in “trailer yards,” large open facilities with rows of trailers. Large distribution centers may also maintain trailer yards for temporary storage while trailers are being loaded or unloaded. Some trailer yards may contain hundreds, or even thousands, of trailers. An efficient means to keep track of trailers in a yard is very important, for the same reasons that monitoring tractor-trailer fleets is important. Some fleet operators may rely upon the battery-operated untethered trailer-tracking systems to provide GPS position data indicating that a particular trailer is presumed to be in a yard, based on the yard's known coordinates. Alternatively, some systems provide radio frequency tagging of trailers, known as RFID, or radio frequency ID.
A basic RFID system has three components: (1) an antenna or coil; (2) a transceiver with a decoder; and (3) an RFID tag, also called a transponder, which is electronically programmed with specific information. Transceivers with strategically placed antennas emit radio signals to activate RFID tags. The transceivers can read data from the tag, write data to the tag, or both. Antennas are the link between tags and transceivers, converting between radio waves and electrical signals. Often, antennas are packaged with the transceiver and decoder to become an interrogator, also known as a reader.
RFID tags typically contain an antenna or inductive coil, memory, and a small processor. They can be identified as active or passive, depending on the means by which they obtain their power. Passive tags operate without an internal battery source, deriving their power from the energy transmitted by the reader. A passive tag is energized by radio waves from the reader, and instantaneously transmits a unique pre-coded identifier back to the reader. Active tags utilize a power source such as an internal battery, and therefore reduce the power requirements of the reader. Active tags can provide greater communication range and better noise immunity than passive transponders. Active tags can also result in higher data transmission rates when used at higher radio frequencies.
Interrogators emit radio waves with an effective range of anywhere from one inch to 200 feet or more, depending on the unit's power output and the radio frequency used. When an RFID tag passes through the interrogation zone, it detects the RF activation signal, causing the tag to transmit its data. The interrogator receives and then decodes the data. Finally, data is passed to the host computer for processing. In the trailer-yard context, RFID tags have been placed on trailers and used to monitor the inventory of trailers in a yard. However, once trailers equipped with RFID tags are outside of the transmit and receive range of the transceiver, visibility for the trailer is lost. Thus it would be desirable to provide a trailer-tracking system that integrates trailer-yard inventorying systems with trailer-position tracking systems.
Thus, a need exists for a system that can track a fleet of mobile trailers, wh

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mobile-trailer tracking system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mobile-trailer tracking system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mobile-trailer tracking system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3352988

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.