Mobile telephone arranged to receive and transmit digital...

Telecommunications – Transmitter and receiver at same station – Radiotelephone equipment detail

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S557000, C710S005000, C709S241000, C709S241000

Reexamination Certificate

active

06285888

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to processing communication data in accordance with first instructions or in accordance with second instructions.
BACKGROUND OF THE INVENTION
Recent advances in the production of digital signal processing devices, including single chip digital signal processors or application specific integrated circuits having DSP functionality, have allowed digital techniques to be exploited in mass-market communications environments. For example, first generation cellular mobile telephones are rapidly being superseded by second generation digital cellular mobile telephones, that provide at least three distinct advantages over the earlier analog systems. Firstly, they allow the overall size of the telephone to be reduced by reducing the requirement for large analog components. Secondly, they are less susceptible to signal degradation while at the same time transmitting signals that are virtually impossible to intercept by eavesdroppers. Thirdly, by the use of time division multiple access (TDMA), they allow greater use to be made of the available bandwidth, allowing a greater number of users to subscribe to mobile services while reducing operating costs for each individual circuit. Furthermore, TDMA technology substantially reduces the cost of base stations, given that a single radio transceiver may be used for establishing a plurality of calls.
Digital mobile telephones systems have been developed in the United States, in accordance with EIA IS-54 while throughout Europe the GSM standard has been adopted, allowing roaming techniques to be exploited across national boundaries. In accordance with the GSM system, a number of communications channels may be increased to a total of eight for each particular frequency pair. In addition, the system also employs frequency hopping such that, from one frame to the next, frames are transmitted on different frequencies.
It has been appreciated that, particularly in congested areas, customers will tolerate a degree of signal degradation while finding total service loss unacceptable to a greater extent. In order to exploit this situation, the GSM standard includes provisions for operating at half the normal transmission rate such that, rather than receiving a burst of data during each frame period, a burst in any one particular direction is only transmitted on alternate frame periods. Thus, using this so-called “half rate” mode of operation, the number of communication channels available for any particular transmission frequency is doubled. Similarly, further reductions in transmission rates may be envisaged, with data being transmitted on every fourth frame for example, although, at present, such a mode of transmission does not form part of the GSM recommendation.
Within the GSM recommendation, a plurality of techniques are employed in order to improve signal transmission while reducing the effects of noise and signal fading etc. The frequency hopping strategy has been identified above. In addition to this, an interleaving process is also performed, as described in the applicant's co-pending European patent application, published as 0 660 558.
Interleaving reduces the negative effects of burst errors but, as a result of the process, it is necessary for a plurality of transmitted frames to be received before data can be reassembled into its original order. Consequently, it is necessary for fast randomly accessible storage locations to be provided so that data may be buffered during the interleaving process and during the de-interleaving process. A mobile telephone will be required to buffer at least 1.5 blocks of source data (684 bits) in the full rate mode of operation, with 342 bits being required during half rate operation. Consequently, less buffering is required for the half rate mode of operation. However, during the coding and decoding process considerably more memory is required for the half rate mode of operation compared to that required for the full rate mode of operation.
It is known for DSPs to be provided with randomly accessible memory locations that are fast enough to supply instruction words to the DSP at the processor's normal operating rate. However, memory devices capable of operating at this rate are expensive and in any optimized design, the amount of this memory should be reduced in order to reduce overall costs. Often, a DSP will be required to perform a plurality of program types over a period of operation and under such circumstances it is often possible to replace a first set of memory instructions within DSP memory with a second set of DSP instructions within said memory. Such a procedure is commonly referred to as an “overlay” and as such may allow the amount of fast randomly accessible memory available to the DSP to be substantially reduced, for the same level of functionality.
However, a problem with known overlays is that a finite time is required for the new program instructions to be written to the fast executable memory. Although by its very nature, the fast randomly accessible memory may receive new instructions very quickly, the speed at which the transfer may take place will be determined by the speed at which the instructions may be read from bulk storage, possibly in the form of bulk storage associated directly with the DSP or, alternatively, from a larger area of slow storage associated with a slower microcontroller. In some situations, users may tolerate small interruptions in communication while a hand-over takes place from one type of operating system to another type of operating system. For example, in the United States, it is known for hand-overs of this type to take place when moving from congested city areas to more rural areas, given that digital systems tend to be used in the city areas while analog systems tend to be maintained within the rural areas. However, in accordance with the GSM recommendation, the maximum hand-over interval is only twenty milliseconds which, in most realizable mobile telephones would not provide sufficient time for the whole of the DSP's fast randomly accessible memory to be rewritten with a new program instruction set.
SUMMARY OF THE INVENTION
According to a first aspect of the present invention, there is provided a method of processing communication data in accordance with first instructions or in accordance with second instructions; characterised by reading said second instructions from a fast storage means; writing transmission data to said fast storage means for processing in accordance with said second instructions; and writing said first instructions to said fast storage means while said stored transmission data continues to be processed in accordance with said second instructions.
In a preferred embodiment, transmission data is written to said fast storage means for processing in accordance with said first instructions while previously written data continues to be processed in accordance with said second instructions.
The first and second type of instructions may relate to different coding and decoding processors formed substantially upon data transmitted at similar rates. For example, within the GSM recommendations, it is possible for data to be processed using a full rate codec or an enhanced full rate codec; where the latter enhances speech quality. However, in a preferred embodiment, the first instructions are configured to operate at full transmission data rate and the second instructions are configured to operate at a reduced data rate. This reduced data rate may consist of a rate which is half that of the full data rate.
According to the second aspect of the present invention, there is provided communication data processing apparatus, comprising processing means, fast storage means for supplying instructions to said processing means, slow storage means and transferring means for transferring instructions from said slow storage means to said fast storage means, characterised by first instructions for operating said device in accordance with a first mode of operation and second instructions for oper

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mobile telephone arranged to receive and transmit digital... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mobile telephone arranged to receive and transmit digital..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mobile telephone arranged to receive and transmit digital... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2454572

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.