Mobile radio set for operation in a TDMA system

Telecommunications – Receiver or analog modulated signal frequency converter – Measuring or testing of receiver

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S574000, C455S067150, C370S337000, C370S347000, C370S441000

Reexamination Certificate

active

06456834

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a method for determining the reception field strength of the RF carriers of adjacent channels and of the current channel in mobile radio apparatus operated in a TDMA system (time-division multiple access system). A plurality of individual measurements are carried out for each RF carrier during a measurement time period, and a representative, determined value is formed from the corresponding individual measured values.
The invention also relates to a mobile radio set for operation in a TDMA system, having RF receiver and transmitter units controlled by a synthesizer, having modulator and demodulator units assigned to an Audio Frequency AF unit, having a level measurement and storage unit, having a counter and having a time-dependent controller which is assigned to the synthesizer, to the RF sections, to the demodulator unit and to the level measurement and storage unit, having a frequency reference unit for the synthesizer, counter and time-dependent controller and for the modulator and demodulator units, and having a control logic device for controlling the level measurement and storage unit and other units, the control logic device and the counter being set up with the time-dependent controller and interacting with the RF receiving section, the demodulator and the level measurement and control unit for the purpose of measuring the levels of predetermined RF carriers repeatedly during a measurement time period and of forming a representative value from the determined individual measured values.
Modern mobile radio sets, such as those which operate using the GSM system, regularly have to measure the field strength at predetermined frequencies in order to allow problem-free handover to a new base station. For example, the GSM system uses 124 RF channels, of which the base station to the mobile radio set uses up to 32 RF channels, whose field strength must be checked. The field strengths of the six strongest carriers are always kept up to date in a memory.
The mobile radio set has to carry out a predetermined minimum number of field strength measurements, which should be carried out at times that are distributed as uniformly as possible. The determined measured values, in the GSM system generally five, are used to form a mean value, the intention of which is to avoid misinterpretations, for example as a result of short-term fading or temporary disconnections.
The field strength measurements are carried out during conversation as well as in the so-called idle mode. For this purpose, the base station always transmits at a predetermined frequency, the “CO” frequency in the GSM system, even if this is unnecessary for the actual signalling. Between two corresponding bursts of the TDMA system, the base station may also briefly transmit at a lower power, so that there are field strength reductions between successive bursts (also called “up/down ramping”). With regard to the required field strength measurement, reference is had, for example, to DRAFT pr ETS 300578, May 1995, ETSI (European Telecommunications Standard Institute). Measurement over the duration of a time slot is also based on the GSM Technical Specification, GSM 05.02, Aug. 1996, Version 5.1.0 published by the ETSI. The field strength measurement for adjacent cells and the problems associated with this are also described in Section 4.1.4.3 of the book entitled “The GSM System”, M. Mouly and Marie-B. Pautet, Palaiseau 1992.
According to the prior art, the field strength of each CO channel is measured five times, in each case for the duration of a time slot. The measurement is thereby in general not carried out from the start to the end of a burst. Instead, as the measurement time lasts for the duration of one burst it covers part of one burst and part of the next burst. This is due to the fact that, although the time frames of the individual radio cells have the same burst duration, they are offset with respect to one another.
In the case of network-independent receivers and mobile radio sets, such as those which operate under the GSM Standard, particular value is placed on low power consumption in order to ensure operation for as long as possible with a battery or one accumulator charge, in particular standby operation. Attention is therefore being paid to not carrying out unrequited functions for as long as possible, in order to reduce the mean power consumption. In the case of devices which operate in a radio network using a time-division multiplex organization, a standby mode exists, also called standby operation or the idle mode. In this mode, all the unrequired function groups, for example, can be disconnected periodically from the power supply in order to reduce the mean energy requirement.
The power-consuming functions in the idle mode also include the measurement of the channel field strength. This, of course, disadvantageously reduces the operating duration of the mobile radio set that can be achieved with one accumulator charge.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a mobile radio set and method of determining the reception field strength, which overcomes the above-mentioned disadvantages of the prior art devices and methods of this general type and which allows the power requirement to be reduced without decreasing the reliability of the measurement.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method of determining a reception field strength of RF carriers of adjacent channels and of a current channel in a mobile radio set operated in a TDMA system, which comprises:
performing a plurality of individual measurements for each RF carrier during a defined measurement time period;
forming a representative value from the corresponding individual measured values; and
choosing a part of a time slot duration as a measurement interval for each individual measurement.
In other words, the objects of the invention are satisfied in that a part of the time slot duration is chosen as the measurement interval for each individual measurement.
The invention results in a considerable savings in power consumption in both the analog and the digital receiving sections. If, for example, measurements are carried out only during one fifth of the duration of a time slot, then this leads essentially to a reduction in the power consumption for field strength measurements to 20% of the normal value. This accordingly achieves a longer operating duration, particularly in standby operation. The prior art system has thus been considerably improved with regard to the power consumption because those level measurements were unconditionally bound to the burst frame, in that the measurements would always be carried out over an entire time slot in the prior art.
It is particularly advantageous if the individual measurements are offset with respect to the time frame. In this way, incorrect measurements caused by disturbances or irregularities which always occur at the same point in a burst are avoided.
In accordance with an additional feature of the invention, the representative value is formed by averaging the individual measured values. Preferably, those individual measured values that lie below a predetermined level are dropped from the averaging process.
In accordance with another feature of the invention, the representative value is formed by determining a median value from the individual measured values. Alternatively, a peak value of the individual measured values may be determined.
In accordance with a further feature of the invention, a time profile of each individual measured value is compared with a stored, predetermined profile of an up/down ramping between successive bursts and, if an individual measured value corresponds with the predetermined profile, the measured value is accordingly corrected. This eliminates or reduces the undesireable effects of the so-called “up/down ramping”.
In accordance with again an added feature of the invention, each measurement interval

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mobile radio set for operation in a TDMA system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mobile radio set for operation in a TDMA system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mobile radio set for operation in a TDMA system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2860297

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.