Telecommunications – Transmitter and receiver at same station – Radiotelephone equipment detail
Reexamination Certificate
2001-03-14
2004-07-20
Vo, Nguyen T. (Department: 2682)
Telecommunications
Transmitter and receiver at same station
Radiotelephone equipment detail
C455S558000
Reexamination Certificate
active
06766177
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
An object of the present invention is an improved mobile telephone, namely a telephone capable of performing operations other than mobile telephony operations. In this respect, in the present invention, the term “mobile telephone” must be understood to mean actually a device that can use the resources of a mobile telephone to send messages that are not necessarily speech messages but may be data or other messages.
The mobile telephone of the invention is chiefly a mobile telephone capable of exchanging information with a base station and furthermore with a device other than a base station. This other element will be mainly, in the description, a chip carrier, especially a smart card. However, this other device could also be a microcomputer or the like. This microcomputer will be connected to the mobile telephone, especially by a connector at the base of the telephone casing, an infrared link or an RF link used for data exchanges between this microcomputer and the mobile telephone and, beyond the mobile telephone, between the microcomputer and a remote site, especially an Internet site. When the mobile telephone is linked to a smart card, this mobile telephone will comprise, especially in a battery pack, for example a removable battery pack, a smart-card reader in which a smart card (or a chip carrier) can be inserted.
2. Description of the Prior Art
Equipment of this kind currently shows several types of problems. The first problem generally relates to the requirements of an operator who puts smart cards into operation. An operator of this kind, for example a bank, will require that the readers into which these smart cards will be inserted for interaction with the operator's services should be authorized readers. To obtain this result, a system has also been devised where a chip token, contained in the mobile telephone and corresponding to a subscription of the user of the mobile telephone with a mobile telephony operator, has to be modified to incorporate this kind of a faculty of transaction with the services of the smart-card operator. In practice, it has been imagined that the chip token, known as a SIM (Secure Identification Module) circuit, has a faculty of conversation with the services of the smart-card operator to enable the mobile telephone to act as a reader (a physically separated and remote reader). An approach of this kind, however, has the drawback wherein the mobile telephony operator who implements the SIM circuit and the smart bank card operators have to reach agreement on the management protocol incorporated in a program memory of this chip token. This agreement is not easy to obtain especially because bank operators are mistrustful. Furthermore, this agreement has to be repeated for each different banking operator. In practice, such is the hesitation over the use of this kind of system that it is not really becoming established.
Another problem raised by this type of approach is that the smart-card reader constituted by the mobile telephone is of course capable of reading only one type of smart card. It should be capable of reading several of them. As the case may be, even for one and the same type of smart card, the reader should be capable of open-ended development, namely it should be capable of providing increasingly improved functions in taking account of the development of the smart cards themselves. The management of the chip tokens and the authorization that they contain then become almost inextricable. And this management is a second reason for the lack of success of the system.
The requirements laid down by the operators who manage smart cards are different from those laid down by the mobile telephony operators who are interested only in the duration of the calls. These requirements include especially the need to transmit a reader number as well as a type of reader or inserted smart card to enable the banking operator services to activate one type of operation or another according to a wish expressed by the user. To simplify matters it may be assumed, that depending on the type of reader, the mode of enciphering secret codes could be different, complicated in varying degrees, and increasingly difficult to break.
As opposed to a technical approach that appeared to be emerging, using a SIM circuit known as a TOOL KIT in which a kit of functions and authorizations makes it possible precisely to carry out transactions with the smart-card operators, the invention recommends the resolving of the problem differently. In the invention, another microprocessor is created in the telephone, preferably removable in the form of a microcard (preferably of the same size as the chip token), that gets linked up with the microprocessor of the mobile telephone, in competition with the SIM circuit of the token. According to the invention, the problem of competition to be resolved is dealt with by creating a preference of execution of commands by the SIM circuit (the chip token). Should the command to be executed be rejected by this SIM circuit (because this command does not correspond to it), then it is executed by the microprocessor that has been added as a supplement to the mobile telephone.
In brief, the mobile telephone gets linked up when the mobile telephone starts operating by putting the SIM circuit into operation. When a connection is made with the services of the smart-card operator (a bank), this bank sends a request. This request is transmitted, for example, by sending SIM (short message service) type class
2
messages
2
. This request is intended for the mobile telephone. It is aimed at activating a given application therein. For example it obtains the communication, to the smart-card operator, of the number of the reader (in the mobile telephone) that gets connected with the application. This request is not part of the request that can be understood by the SIM circuit. This SIM circuit normally reroutes the messages that it does not understand towards a store of these messages in one of the memories of the mobile telephone.
In the invention, before this rerouting, the command is sent to the additional microprocessor in asking it if it is capable of interpreting and executing the command. Normally, it is capable of interpreting this command because this additional microprocessor has been precisely given for this purpose by the bank smart-card operator. This additional microprocessor then informs the microprocessor of the mobile telephone that it is capable of carrying out the command and the expected transaction takes place.
By acting in this way, the problem of exchanges between mobile telephony operators and smart-card operators is eminently resolved since they no longer need to agree on the operating protocols inside one and the same security circuit. Furthermore, the various operations that can be used with a smart card are essentially payment operations or what are known as electronic ticket operations, whether these are pure payment operations, operations for increasing credit or electronic wallet debit operations, operations instituted in common with the bank and certain service providers such as airlines or the like. In these conditions, the additional microprocessor will advantageously be removable, in the form of a microcard. This microcard will be associated with the smart card to form a pair with this card that it is supposed to read in a mobile telephone.
SUMMARY OF THE INVENTION
An object of the invention therefore is a mobile telephone comprising:
a first microprocessor to carry out a physical management of telecommunications circuits of the mobile telephone,
a second microprocessor to manage subscriber signals for the use of this mobile telephone on a mobile telephony network,
a chip carrier reader to receive a chip carrier, this chip carrier being possibly provided with a third microprocessor,
wherein the mobile telephone comprises:
a fourth microprocessor to manage the communication between the smart card reader and the first microprocessor, and
in a program memory of the firs
Chambon François
Leheup Jocelyn
Behulu Alemayehu
Patterson Thuente Skaar & Christensen P.A.
Sagem SA
Vo Nguyen T.
LandOfFree
Mobile phone does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Mobile phone, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mobile phone will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3223233