Mobile network for remote service areas using mobile stations

Telecommunications – Carrier wave repeater or relay system – Portable or mobile repeater

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S445000

Reexamination Certificate

active

06778809

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to the field of mobile wireless networking, and more particularly to a system, method, and apparatus for transmitting and receiving data in a mobile communications network.
2. Description of the Related Art
Communication networks, for example the mobile telephone network according to the GSM standard (Global System for Mobile Communication), enable communication connections to mobile stations of mobile subscribers via a radio interface. These networks use radio-based components that set up, maintain and dismantle by communications links by transmitting and receiving signaling and traffic information (e.g. in the form of speech or data) in both transmission directions via the radio interface. Mobile subscribers access the communications network by means of mobile stations, which can communicate in wireless fashion with radio stations (base stations) arranged in distributed fashion at the network side. These base stations are often configured into cellular systems.
Cellular systems are composed of interconnected neighboring “cell sites.” These cell sites operate low power facilities (facilities that function on low amounts of electric energy). The cellular telephone industry is limited to 45 MHz of spectrum bandwidth, which without frequency-reuse, would limit each cellular carrier to 396 frequencies or voice channels. In order to increase calling capacity, these low power facilities “reuse” frequencies on the electromagnetic spectrum. The manner in which providers organize, or “configure,” their cells is an important factor in increasing frequency reuse and establishing an area's calling capacity. One such configuration is an “omni cell” configuration, which is often used in rural areas. Cells in urban areas often use a sector cell configuration. The omni cell configuration uses omni-directional or whip antennas that emit signals in 360 degrees. Whip antennas do not lend themselves to frequency reuse as well as sector antennas. As a result, omni cell configurations are generally used in rural areas since these areas are sparsely populated and consequently do not need extra calling capacity. Urban areas, on the other hand, have denser populations and require additional calling capacity to accommodate the system's greater number of users. The sector cell configuration provides this extra calling capacity by utilizing sector or panel antennas that divide the omni cell into three segments. The three segments use different frequencies, allowing greater reuse of the channels. Because they have the capacity to handle large volumes of calls, sectored sites are used particularly in areas near high vehicular activity such as freeways and major intersections. Although a cell site's radius depends upon its surrounding topography and its capacity to handle calls, cell sites in rural areas generally have a radius between five and twelve miles, and cell sites in urban areas typically have a radius between two and five miles.
There are three basic types of cell sites. Coverage sites serve to expand coverage in large areas or in areas with difficult terrain and to enhance coverage for portable systems. These sites allow users to make and maintain calls as they travel between cells. Capacity sites serve to increase a site's capacity to handle calls when surrounding sites have reached their practical channel limits. Transition sites are needed for frequency reuse. Antennas mounted on tall support structures sometimes create a problem in frequency reuse because they “see” everything and overlap into the next cell sites coverage area. In order to control frequency reuse problems, these tall structures must be removed and replaced by transition sites. Transition sites allow the cellular company to increase the capacity of calls and maintain coverage simultaneously.
Traditionally, cellular phones have utilized analog transmission signals. In the analog technology, voice messages are electronically replicated and amplified as they are carried from the transmitting antenna to the receiving antenna. A problem with this technology is that the amplification procedure tends to pick up “noise,” sometimes making the message difficult to hear. In order to diminish this noise and to provide greater calling capacity per channel, the cellular industry has is transitioning to digital transmission signals. In the digital technology, voice messages are converted into digits (zeroes and ones) that represent sound intensities at specific points in time. Because natural pauses in the conversation are eliminated, more calling capacity becomes available from the same amount of spectrum, thus reducing the need for new sites. An added benefit is that the background noise that is generally heard in the analog system becomes inaudible. The graphic difference between the two technologies is that analog signals are transmitted as continuous waves while digital technology converts the analog signal to binary digits.
There are currently two popular forms of digital technology: time division multiple access (TDMA) and code division multiple access (CDMA). Both of these forms of digital technology attempt to provide multiple access over one frequency, or channel. While TDMA may increase calling capacity three to ten times over analog technology, CDMA may increase calling capacity by ten to twenty times. Cell phones have recently added wireless access protocol (WAP) to allow more digital functions such as limited Internet access. In 2001, G3 (third generation) cell phones are expected to appear. G3 cell phones should supersede current cell phones because G3 phones will be able to attain a data transfer rate of 144 Kbps (under ideal conditions). Bluetooth-enabled cellular phones are also due in 2001. As with personal computers (PCs) and personal digital assistants (PDAs), Bluetooth cell phones will let users wirelessly transfer data among other Bluetooth devices. Bluetooth is a hotly anticipated feature in the cell phone market. Bluetooth is designed to enable users to create their own local-area network (LAN) or personal area network (PAN).
All of these advances, together with the proliferation of the Internet, have increased the demand for seamless wireless digital messaging and Internet connections. While the above mentioned cellular systems work well in areas of relatively high population density (e.g., in metropolitan areas), they are not accessible in many areas of the world. One such area in particular are the transoceanic shipping lanes used by freight vessels. The crews and passengers of these ships are typically unable to utilize their cell phones, two-way pagers, wireless email appliances, or Internet browsers unless they are in a port.
While satellites do offer the possibility of a connection to land-based digital networks, the costs associated with satellite communications (e.g., both hardware and airtime) may render it too expense for some cost-sensitive commercial shipping and fishing vessels. This may particularly be true for “low priority” uses such as personal emails between crew members and their families and recreational Internet browsing. Thus, an alternative system and method for providing digital communications and Internet access for ocean-going vessels is desired.
SUMMARY
The problems set forth above may at least in part be solved by a system and method that are capable of using mobile stations that act as store and forward repeaters to provide network connectivity.
In one embodiment, the method for transmitting data in a mobile digital network may include first broadcasting a first interrogation signal from a mobile station that has a data packet that is ready to be transmitted. The interrogation signal causes any other stations within range to respond with a response-to-interrogation signal. The mobile station may then transmit the data packet to the responding station. Once the responding station has received the data packet, it may send a confirmation signal to the first station acknowledgi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mobile network for remote service areas using mobile stations does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mobile network for remote service areas using mobile stations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mobile network for remote service areas using mobile stations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3279129

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.