Mixtures suitable as fuel additives

Fuel and related compositions – Liquid fuels – Organic nitrogen compound containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C044S434000, C044S424000

Reexamination Certificate

active

06267791

ABSTRACT:

The present invention relates to mixtures which are suitable as fuel additives and comprise essentially
A) at least one amine, polyamine or alkanolamine, each of which carries a hydrocarbon radical having an average molecular weight of from 500 to 10,000 and
B) at least one polyetheramine of the formula I
where
m is 1 or 2
n is from 1 to 100,
R
1
is a monovalent C
2
-C
35
-hydrocarbon radical when m is 1 and
a divalent C
2
-C
30
-hydrocarbon radical when m is 2, and
R
2
and R
3
are each hydrogen, C
1
-C
12
-alkyl, C
5
-C
7
-cycloalkyl, C
6
-C
10
-aryl, a polyalkyleneamine radical or alkanolamine radical having from 1 to 5 nitrogen atoms, where the radicals may be identical or different and, together with the nitrogen atom to which they are bonded, may form a five-membered or six-membered ring in which further hetero atoms may be incorporated, and
D is C
2
-C
5
-alkylene.
The present invention furthermore relates to the use of the mixtures and fuels for gasoline engines, which contain the components A and B.
The carburetor and intake system of gasoline engines as well as injection systems for metering fuel into gasoline and diesel engines become increasingly contaminated by impurities which are caused by dust particles from the air, uncombusted hydrocarbon residues from the combustion chamber and the vent gases from the crankshaft casing which are passed into the carburetor.
The residues adsorb fuel and change the air/fuel ratio during idling and in the lower part-load range so that the mixture becomes richer, the combustion more incomplete and in turn the amounts of uncombusted or partly combusted hydrocarbons in the exhaust gas become greater and the gasoline consumption increases.
It is known that the intake system of gasoline engines can be kept clean by adding detergents (cf. for example M. Rosenbeck in Katalysatoren, Tenside, Mineral-öladditive, Editors J. Falbe and U. Hasserodt, page 223 et seq., Thieme Verlag, Stuttgart 1978, and Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 16, 719 et seq., 1990, VCH Verlagsgesellschaft). Emissions and fuel consumption are thus reduced and the driving characteristics are improved. The principle of the molecular composition of such detergents may be described generally as the linking of polar structures to generally relatively high molecular weight lipophilic radicals. Typical examples of these are products based on polyisobutene having amino groups as polar groups, as described in EP-A 244 616.
A further important additive component for fuels is a carrier oil. These carrier oils are as a rule high-boiling heat-stable liquids. EP-A 356 726 discloses esters of aromatic polycarboxylic acids with long-chain alcohols as carrier oils. U.S. Pat. No. 5,112,364 describes polyetheramines having terminal alkylphenol or alkyl-cyclohexyl groups as fuel additives which have in particular good valve-cleaning properties.
WO-A 91/03529 describes the combination of detergents which carry certain amino groups with polyether alcohols as carrier oils. This combination in particular contributes to a lesser extent than its individual components to the octane requirement increase (ORI), which is due to deposits of the fuel or the additives on engine parts. A new engine reaches its final octane requirement only after a considerable running time, after which said requirement may be considerably higher than at the beginning. In general, additives should at least not reinforce this effect.
A considerable disadvantage of the stated combination of additives is the unsatisfactory miscibility of the detergent with the carrier oil. Cloudy mixtures which cannot be added to the fuels frequently result. Phase separation frequently occurs in these mixtures after prolonged stoppage. The distribution of the detergent in the mixture is thus inhomogeneous. In practice, however, the additive packages required are those which contain all components in dissolved form and which can be added to the fuel in one process step.
It is an object of the present invention to provide a combination of a detergent and a carrier oil component which, in addition to the properties of having a valve-cleaning effect in fuels and not adversely affecting the ORI compared with fuels without additives, remain thoroughly miscible with one another.
We have found that this object is achieved by the mixtures defined above, which contain a detergent A and a polyetheramine B of the formula I. We have also found the use of these mixtures, and fuels which contain the components A and B.
Component A
The component A is effective in fuels primarily as a detergent. Suitable components A are amines, polyamines or alkanolamines which possess a hydrocarbon radical having an average molecular weight of from 500 to 10,000, preferably from 600 to 2,500, particularly preferably from 700 to 1,500.
The hydrocarbon radical is, as a rule, branched. In general, it is a radical which is obtainable by polymerization of olefins. These olefins are preferably C
2
-C
6
-olefins, such as ethylene, propylene, 1-butene, 1-pentene and particularly preferably isobutene. Both homopolymers and copolymers, for example polymers of from 70 to 95 mol % of isobutene and from 5 to 30 mol % of 1-butene, are suitable. As a result of their preparation process, these polyolefins generally consist of a mixture of compounds having different molecular weights.
After chlorination, these polyolefins can be reacted with amines in a conventional manner. However, hydroformylation of the polyolefin and amination of the resulting aldehyde and alcohol mixture under hydrogenation conditions (cf. EP-A 244 616) are preferred since this method leads to chlorine-free products. The amino group of the detergent A is derived from conventional amines, such as ammonia, primary amines, such as methylamine, ethylamine, butylamine, hexylamine or octylamine, secondary amines, such as dimethyhlamine, diethylamine, dibutylamine or dioctylamine, and heterocycles, such as piperazine, pyrrolidine or morpholine, which may carry further inert substituents. Polyamines, such as ethylenediamine, propylenediamine, diethylenetriamine, triethylenetetramine, hexamethylenediamine, tetraethylenepentamine and dimethylaminopropylamine, as well as various alkylene-carrying polyamines, such as ethylenepropylenetriamine, may also be mentioned as starting materials for the preparation of the detergents A. Examples here are alkanolmonoamines, such as ethanolamine, and alkanolpolyamines, such as aminoethylethanolamine. Among these, the polyamines are preferred, in particular ethylenediamine, diethylenetriamine and triethylenetetramine. However, ammonia is very particularly preferred.
Component B
The novel mixture contains, as the carrier oil, a polyetheramine of the general formula I
Specifically, the variables have the following meanings:
m is 1 or 2, preferably 1.
n indicates the number of repeating oxyalkylene units and is from 1 to 100, preferably from 5 to 50, in particular from 7 to 30.
The radicals R
1
are different hydrocarbon radicals. Where m is 1, R
1
is a monovalent C
2
-C
35
-hydrocarbon radical. Straight-chain aliphatic radicals, such as n-hexyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl and n-tridecyl, are suitable, as well as branched aliphatic radicals, such as 2-ethylhexyl, isobutyl and tert-butyl. Aryl radicals, such as phenyl, and alkyl-substituted phenyl radicals, including in particular C
6
-C
16
-substituted phenyl radicals, such as octylphenyl, nonylphenyl and dodecylphenyl, may also be mentioned. The alkyl radicals are preferably in the 2- and 4-position of the phenyl ring. Commercial mixtures of the positional isomers may also be used. Compounds which are polysubstituted by alkyl are also suitable.
Where m is 2, R
1
is a divalent C
2
-C
30
-hydrocarbon radical, such as alkylene, eg. ethylene, propylene, butylene or hexylene. However, radicals which are derived from polyphenols, such as bisphenol A (2,2-bis-(4-hydroxyphenyl)-propane, 1,1-bis-(4-hydroxyphenyl)-ethane, 1,1-bis-(4-hydroxyphenyl)-isobutane, 2,2-bis-(4-hydroxy-3-tert-butylphenyl)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mixtures suitable as fuel additives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mixtures suitable as fuel additives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mixtures suitable as fuel additives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2527762

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.