Mixing method

Chemistry: analytical and immunological testing – Involving an insoluble carrier for immobilizing immunochemicals

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S337000, C356S339000, C356S426000, C356S427000, C356S428000, C356S441000, C356S246000, C422S051000, C422S105000, C422S105000, C435S007100, C435S286700, C435S288300, C435S288500, C435S288700, C436S164000, C436S165000, C436S514000, C436S827000

Reexamination Certificate

active

06468807

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method for carrying out mixing in thin liquid layers. More specifically, the invention concerns a method for carrying out mixing in disposable devices to permit quantitative and qualitative analyses. The invention also concerns a method for performing such analyses as well as devices which are suited for use when performing the analyses.
BACKGROUND ART
Disposable devices, so-called microcuvettes, are disclosed in, for instance, Patent Publications EP-469 097 and WO 96/33399. These microcuvettes are intended for sampling of liquid, such as blood, mixing of the liquid sample with a reagent and direct optical analysis of the sample mixed with the reagent. The micro-cuvette comprises a body with a cavity which contains a measuring area. The cavity communicates with the surroundings outside the body through an inlet. Moreover, the cavity has a predetermined volume and is designed in such manner that the sample can enter by capillary force. A dry reagent is applied to the surface of the measuring cavity. Microcuvettes of this type have been commercially successful to a considerable extent and are currently used for quantitative determination of, for instance, haemoglobin and glucose in whole blood. An important factor which has contributed to this success is that the time from sampling to response is very short. One reason for this period of time being very short is that the reagent compositions that are used for determination of haemoglobin and glucose are readily soluble in the small amount of blood that is sucked into the capillary cavity of the microcuvette, which results in a mixing with uniform distribution of the reagent components practically immediately. However, it has been found that these prior-art microcuvettes are less suitable for determining components that require reagents, which are not readily soluble and/or in which diffusion problems exist and which therefore require a comparatively long period of time for dissolution and reaction.
A method, which has been developed specifically for mixing a liquid and a reagent in the thin capillary layers that exist in the microcuvettes, has been suggested in U.S. Pat. No. 4,936,687. In this method, use is made of small magnetic particles as means to accomplish the mixing, and the actual mixing operation is carried out by using outer magnets, which are specially designed and arranged in a special manner and operated in a predetermined fashion. After the mixing procedure, the magnetic particles are separated from that part of the sample which is to be analysed. Although this method functions well for certain types of liquids/reagents, it is not particularly attractive from an industrial and commercial point of view since special arrangements and designs of magnets are necessary. The use of fine magnetic particles and the separation of these particles after the mixing step also require time and work, which makes the method complicated and comparatively expensive. Moreover, there is a risk of chemical obstruction, caused by the magnetic particles, of both samples and reagents.
Furthermore, EP 75 605 discloses a method for mixing in capillary liquid layers. According to this method, the mixing is carried out in a reaction vessel, which comprises two parallel plates which are movable relative to and towards each other. Just a few microlitres of reagent and sample are applied, when filling the reaction vessel, to particular adhesion surfaces or in various positions within an adhesive surface of the plates, and mixing of sample and reagent is carried out by moving the plates towards each other and perpendicular to the liquid layer formed by the sample and the reagent. This prior-art method thus requires that both sample and reagent be present in the form of liquid, which makes it easier to carry out the mixing compared with the above microcuvettes with a dry reagent which besides is difficult to dissolve. This type of mixing, i.e. where the liquid layer is made to move perpendicular to the plane of the layer, has been tested to achieve mixing in microcuvettes of the above type but has not been found to be sufficiently effective.
A simple and effective method for mixing of liquid and reagent in thin capillary layers, which is also suitable to accelerate the dissolution of less soluble reagents, would increase the number of determinations that can be carried out in both microcuvettes and devices of the same fundamental design as the microcuvettes. As a result, analyses which up to now could not be performed or for which there has previously been no interest in connection with disposable devices for essentially simultaneous sampling and analysis and with capillary drawing in of the sample could also be attractive.
SUMMARY OF THE INVENTION
According to the invention, mixing is carried out in a capillary liquid layer arranged between two essentially plane-parallel walls by the walls, which are essentially immovable relative to each other, being subjected to a motion essentially in the plane of the liquid layer, balancing the motion against the capillary force exerted by the walls on the liquid and selecting the interface between the liquid layer and the surrounding medium so that it functions as an elastic membrane. The invention also concerns a disposable device intended for use when carrying out the method and especially in sampling and analysis.
This method is well suited to achieve more rapid dissolution of certain dry reagents which are relatively difficult to dissolve, and more efficient mixing of sample and reagent in the thin liquid layers that are present in disposable devices or microcuvettes of the above type. In principle, however, the mixing method can be applied to all liquids in the form of thin layers between essentially parallel walls which are arranged at a capillary distance from each other.
DETAILED DESCRIPTION OF THE INVENTION
The capillary force depends on the type of material of the walls, the type of sample including additives, if any, such as reagents, and the distance between the walls. The frequency and amplitude parameters of the motion must be balanced against the capillary force that is present in the individual case, and these parameters must be sufficient to provide mixing without any risk that part of the liquid escapes from the microcuvette, which may happen if the frequency/amplitude is too high.
The upper limit of the length of the elastic membrane, i.e. of the interface of the sample towards the surrounding medium, such as air, is present in the case where the volume of the liquid sample is only limited by the parallel walls and is not enclosed in a cavity. The lower limit is determined experimentally on the basis of sample liquid, reagent, suitable beat frequency, cavity depth etc.
When the correct conditions for the motion are present, the interface serves as an elastic membrane which forces the chemical compounds in the sample liquid and a reagent composition, if any, which is dissolved or being dissolved, to move with the liquid motion, which results in a mixing of sample liquid and reagent in the thin liquid layer.
According to the present invention, the mixing is thus carried out by making a device with a liquid layer of a liquid sample and reagent move essentially in the plane of the liquid layer during a period of time and at a speed which are sufficient to accomplish the desired mixing. The motion can be rotating but a reciprocating motion is preferred. Any combination of these motions can also be used. As mentioned above, an important feature of the new mixing method is that the motion is balanced against the capillary force so that the liquid sample does not flow out of the device. The capillary force is determined by the type of sample and the material of the walls of the device, and the balancing operation is preferably made experimentally. As indicated above, it is a critical feature that the interface between the sample and the surroundings is selected so that this interface can serve as an elastic membrane. The interface between

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mixing method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mixing method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mixing method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2979071

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.