Mixing device for reconstituting dehydrated food particles

Agitating – Having specified feed means – By suction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C366S131000, C366S196000, C366S604000

Reexamination Certificate

active

06729753

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a device adapted for mixing and delivering food especially food containing large particulates obtained from a mixture of dehydrated material and a diluent such as water and the like, and to a method for providing a hydrated foods that are prepared from such large particulate dehydrated materials.
BACKGROUND OF THE INVENTION
Dehydrated foods are often prepared in dispensing machines by mixing a metered amount of dehydrated material with a metered amount of water or other diluent in appropriate ratio to obtain a proper reconstitution that makes the final food palatable and as close as possible to the appearance and texture of homemade food, while also being dispenses at the desired serving temperature. The preparation of food in a dispensing device by mixing such a powdered food component with a diluent is practical, speedier and saves labor and catering space in foodservice areas such as in restaurant, fast foods, offices, convenient stores, other public or private work or commercial places, sport arenas, or other places.
Food products, in particular culinary products, that are provided by automatic dispensing systems suffer from several drawbacks. They are sometimes viewed as having relatively poor quality, appearance and/or taste.
There is actually an increasing consumer interest for on-demand food of improved texture, in particular for culinary products such as soup, potage or more solid food such as mashed vegetables and the like. One way for improving the quality is by adding discrete non-dispersible or non-soluble particulates in the dehydrated powder, therefore increasing the consumer's acceptance for these types of food.
Attempts have been made to employ traditional hot beverage dispensers for reconstituting and dispensing culinary food from dehydrated material such as soup, mashed potatoes and the like. However, those machines of the prior art are not well fitted to properly deliver products of desired texture and quality from dehydrated materials that contain large particulates without risking clogging of the equipment after a limited number of dispensing cycles.
Furthermore, the powder used for making beverages in beverage dispensers, for example, is usually powder that is agglomerated. Once partly moisturized, agglomerated powder is known in the art to more freely flow than a non-agglomerated powder. However, agglomerated powder is also more costly than non-agglomerated powder as an additional step is required during the processing of the powder. Therefore, it is more expensive to use agglomerated material for reconstitution of food preparations, especially for culinary preparations. While agglomeration of powder improves powder flow, it does not necessarily prevent the device from clogging when large particulates are to be delivered.
In fact, traditional machines have proved to be completely inappropriate to deliver food preparations containing large non-dispersible or non-soluble particulates. After being hydrated, these particulates can end up with a size of up to 15-20 mm, and the machines can clog after a few cycles only. Clogging is due essentially to the formation of pieces that are larger than the discharge outlet of the mixing chamber, or due to two or more particles of equal or lesser size than the discharge outlet of the mixing chamber trying to exit the chamber simultaneously. In addition, the mixing devices of the prior art have a tendency to damage the particulates by breaking or cutting them to a smaller size that is unacceptable for preparing the desired food products. The resulting food preparation has poor texture with particulates of reduced size and it does not provide the added value that is expected by the consumer.
U.S. Pat. No. 4,185,927 discloses an apparatus for quickly mixing a liquid with a dry particulate food or beverage material, especially mashed potato mix with hot water, to produce a palatable serving of mashed potatoes. In this mixing machine, a centrifugally agitator rotates on a horizontal axis. The food product enters the mixing chamber in substantially horizontal flow through an inlet port of an end wall and the mixture leaves the chamber in substantially horizontal flow through an outlet port wholly spaced below the inlet port and extending down to the level of the bottom of the chamber. Centrifugal action maintains a pressure difference between the ports that assures fast movement of materials through the mixing chamber to prevent plugging of the machine by the mashed potato mix. However, this device is not designed for dispensing dehydrated material containing large particulates.
Therefore, there is a need for a mixing and delivering device capable of undertaking the preparation from dehydrated food material which contains particulates of desired size, and preferably of larger sizes, to repeatedly make, without clogging the device, final food preparations of richer, better quality and texture. The present invention now satisfies this need.
SUMMARY OF THE INVENTION
The invention relates to a mixing device of high versatility as it is able to very effectively mix and deliver food of various types from dehydrated material for serving in a cup or other container at the desired texture. The invention is particularly useful for mixing and delivering food preparations from dehydrated material containing large particulates, such as pieces of vegetable, meat, fish, seed, fruit and the like, while preserving at best the integrity of the particulates and delivering a particulate product of a higher organoleptic and nutritional value into the serving container.
In a preferred embodiment of the device, there is provided a mixing chamber for receiving at least one dehydrated component and at least one hydrating component. The dehydrated component may preferably include large particulates. At least one inlet is provided in the chamber for the dehydrated component and hydrating component to enter the chamber. The inlet may be common to the at least two components or separate inlets may separately deliver the components. An outlet is provided in the chamber that allows the mixture of the at least two components to exit the chamber. A propelling means, later called “propeller” herein, is arranged in the mixing chamber to provide centrifugal forces in a main centrifugal direction. In particular, the propeller is configured in rotation about an axis of rotation to mix and propel the combination of components. The propeller is also positioned in the mixing chamber to provide a pumping action in the mixing chamber as a result of the centrifugal effect. The propeller has a limit plane of rotation corresponding to the rearmost limit in the mixing chamber where the material is submitted to the centrifugal effect. The limit plane of rotation substantially demarcates a suction part on one side and a centrifugal part of the mixing chamber on the other side of the limit plane. Therefore, all material passing forward the limit of the limit plane undergoes centrifugal forces by the propeller in the centrifugal part.
According to an essential aspect of the invention, the outlet is enlarged in its axial dimension as compared to the existing mixing device to be of at least 12.5 mm, preferably at least 15 mm. Importantly, the outlet remains positioned in the mixing chamber relative to the propeller so that at least 50% of its surface area, more preferably 65% and even more preferably 80%, is located in the centrifugal part forward of the rear rotational plane.
As a result, such an enlargement of the outlet shows a vast improvement in the dispensing of the dehydrated component with large particulates without risks clogging whereas the outlet relative position ensures that an optimal mixing action is still maintained. Therefore, in addition to the benefit of promoting the flow of large particulates by the elongated configuration of the outlet, the pumping action is sufficiently effective to provide a satisfactory level of mixing and hydration. In particular, there is no significant amount of material

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mixing device for reconstituting dehydrated food particles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mixing device for reconstituting dehydrated food particles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mixing device for reconstituting dehydrated food particles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3259981

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.