Mixed enclave operation in a computer network

Electrical computers and digital processing systems: multicomput – Computer network managing – Computer network access regulating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S218000, C709S250000, C713S152000

Reexamination Certificate

active

06643698

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to computer networks and in particular to communications in a computer network environment with multi-level secure network users and non-secure network users.
BACKGROUND OF THE INVENTION
Multi-level secure (MLS) networks provide a means of transmitting data of different classification levels (i.e. Unclassified, Confidential, Secret and Top Secret) over the same physical network. To be secure, the network must provide the following security functions: data integrity protection, separation of data types, access control, authentication and user identification and accountability.
Data integrity protection ensures that data sent to a terminal is not modified enroute. Header information and security level are also protected against uninvited modification. Data integrity protection can be performed by checksum routines or through transformation of data, which includes asymmetric private and public key encryption.
Separation of data types controls the ability of a user to send or receive certain types of data. Data types can include voice, video, E-Mail, etc. For instance, a host might not be able to handle video data, and, therefore, the separation function would prevent the host from receiving video data.
Access control restricts communication to and from a host. In rule based access control, access is determined by the system assigned security attributes. For instance, only a user having Secret or Top Secret security clearance might be allowed access to classified information. In identity based access control, access is determined by user-defined attributes. For instance, access may be denied if the user is not identified as an authorized participant on a particular project. For control of network assets, a user may be denied access to certain elements of the network. For instance, a user might be denied access to a modem, or to a data link, or to communication on a path from one address to another address.
Identification of a user can be accomplished by a unique name, password, retina scan, smart card or even a key for the host. Accountability ensures that a specific user is accountable for particular actions. Once a user establishes a network connection, it may be desirable that the user's activities be audited such that a “trail” is created. If the user's actions do not conform to a set of norms, the connection may be terminated.
Currently, there are three general approaches to providing security for a network: trusted networks, trusted hosts with trusted protocols, and encryption devices. The trusted network provides security by placing security measures within the configuration of the network. In general, the trusted network requires that existing protocols and, in some cases, physical elements be replaced with secure systems. In the Boeing MLS LAN, for instance, the backbone cabling is replaced by optical fiber and all access to the backbone is mediated by security devices. In the Verdix VSLAN, similar security devices are used to interface to the network, and the network uses encryption instead of fiber optics to protect the security of information transmitted between devices. VSLAN is limited to users on a local area network (LAN) as is the Boeing MLS LAN.
Trusted hosts are host computers that provide security for a network by reviewing and controlling the transmission of all data on the network. For example, the U.S. National Security Agency (NSA) has initiated a program called Secure Data Network System (SDNS) which seeks to implement a secure protocol for trusted hosts. In order to implement this approach, the installed base of existing host computers must be upgraded to run the secure protocol. Such systems operate at the Network or Transport Layers (Layers 3 or 4) of the Open Systems Interconnection (OSI) model.
Encryption devices are used in a network environment to protect the confidentiality of information. They may also be used for separation of data types or classification levels. Packet encryptors or end-to-end encryption (EEE) devices, for instance, utilize different keys and labels in protocol headers to assure the protection of data. However, these protocols lack user accountability since they do not identify which user of the host is using the network, nor are they capable of preventing certain users from accessing the network. EEE devices typically operate at the Network Layer (Layer 3) of the OSI model. There is a government effort to develop cryptographic protocols which operate at other protocol layers.
An area of growing concern in network security is the use of computer devices in non-secure networks. Such computer devices often include valuable information, which may be lost or stolen due to these computers being accessed through the non-secured network. In light of this problem, a number of related products have been developed. The products developed include Raptor Eagle, Raptor Remote, Entrust, Secret Agent and Veil. Although, these products serve the same purpose, a number of different approaches have been utilized. For example, Raptor Eagle, Raptor Remote, and Veil implement these products as software instantiations. While Entrust and Secret Agent utilize hardware cryptographic components. Additionally, Raptor products are also application independent.
A problem with the above described products is that none are based upon the use of highly trusted software. Veil is an off-line encryption utility, which cannot prevent the inadvertent release of un-encrypted information. While Raptor Eagle and Raptor Remote are based on software instantiations and thus cannot be verified at the same level of assurance. Secret Agent and Entrust while hardware based are dependent upon the development of integration software for specific applications.
Many network security devices, also referred to as Inline Network Encryptors (INE), provide privacy for all traffic leaving a network by encrypting the traffic. The limitation of such devices lies where a network needs to accommodate communications between secure network users and non-secure network users. An Internet including both secure and non-secure users is referred to as a “Mixed Enclave”. Once a secure user operates under a security device, such as an Inline Network Encryption (INE), that user can only communicate with other users with similar security devices or INEs with the same keys.
Accordingly, an object of the present invention is to provide for a multi-level network security apparatus a method of communications in a mixed enclave network system between both users communicating with and users communicating without the multi-level network security apparatus.
SUMMARY OF THE INVENTION
The present invention provides a method for mixed enclave communications over a network including both secured and unsecured users. The method entails permitting communications over the network between: 1) secured users; and 2) secured and unsecured users, where the secured user's network interface unit (SNIU) discovers dynamically whether the other user is another secured user or an unsecured user, and, controls passage of information between a secured user and an unsecured user.
Discovering whether communications are with another secured user or an unsecured user, utilizes Internet protocol (IP) addresses for identifying the secured and unsecured users, using association establishment messages for the secured users authenticating each other, and exchanging security parameters. For communications between one of the secured users and one of the unsecured users, the secured user employs a waiting queue to influence passage of information. When one of the secured users receives initial information from one of the unsecured users that is not already established, the secured user creates an entry in an association table indicative of at least the unsecured user's IP address and association type. When the secured user further compares its security level to that of the unsecured user for determining if information to the unsecured user can be allowed t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mixed enclave operation in a computer network does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mixed enclave operation in a computer network, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mixed enclave operation in a computer network will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3147853

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.