Mixed chimerism and tolerance

Surgery – Miscellaneous – Methods

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S093100

Reexamination Certificate

active

06718986

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to tissue and organ transplantation.
SUMMARY OF THE INVENTION
The invention provides methods of inducing tolerance to foreign antigens. The methods feature preparative regimens which minimize or eliminate the need for hematopoietic space-creating irradiation, especially, preparative whole body irradiation. In particular, it has been discovered that the administration of a relatively large number of stem cells, combined with the creation of thymic space, can allow the induction of tolerance without the need for whole body irradiation (WBI).
Accordingly, the invention features a method of inducing tolerance in a recipient mammal of a first species to a graft from a donor mammal of a second species. The method includes: introducing, e.g., by intravenous injection, into the recipient mammal, hematopoietic stem cells; and preferably, implanting the graft in the recipient. The hematopoietic cells are believed to prepare the recipient for the graft that follows, by inducing tolerance at both the B-cell and T-cell levels.
The recipient mammal can be, by way of example, a human. The donor mammal can be, by way of example, a swine, e.g., a miniature swine. The graft is preferably from a discordant species. The graft preferably expresses a major histocompatibility complex (MHC) antigen, preferably a class II antigen. In particularly preferred embodiments the recipient is a primate, e.g., a human, and the donor is a swine, e.g., a miniature swine.
As is discussed elsewhere herein, the inventors have discovered that this method can be practiced without the administration of hematopoietic space-creating irradiation, e.g., whole body irradiation. Whole body irradiation is often used in the art to create hematopoietic space and thus promote engraftment, chimerism, and tolerance. The need for hematopoietic space-creating irradiation can be reduced or entirely eliminated by the inclusion of one or more of the following steps in the method:
(1) Administering a sufficiently large number of donor hematopoietic cells to the recipient such that, donor stem cells engraft, give rise to mixed chimerism, and induce tolerance, preferably the stem cells are administered either in combination with one or more of the treatments disclosed herein, e.g., (2), (3), or (4) described immediately below;
(2) Administering hematopoietic space creating antibodies or drugs to the recipient. E.g., administering an inhibitor of cell proliferation, e.g., DSG, or an anti-metabolite, e.g. brequinar, or an anti-T cell antibody, e.g., one or both of an anti-CD4 or anti-CD8 antibody.
(3) providing treatments (other than whole body irradiation) which promote engraftment and the formation of mixed chimerism by enhancing the ability of donor cells to compete with host bone marrow cells, e.g., administering stromal cells or administering donor specific growth factors or cytokines, e.g., where the donor is a miniature swine, administering one or more of swine SCF, swine IL-3, or swine GM-SCF, to the recipient.
(4) creating thymic space in the recipient, e.g., by irradiating the thymus of the recipient, e.g., by administering between 100 and 1,000, more preferably between 300 and 700, e.g., 700 rads, of thymic irradiation, or by administering anti-T cell antibodies in sufficient dose to inactivate thymocytes. Other methods for the creation of thymic space include: the administration of steroids, corticosteroids, brequinar, or an immune suppressant chemical or drug, e.g., rapamycin, cyclosporin, or FK506. Treatment to create thymic space should be administered, or at least begun, prior to the administration of hematopoietic stem cells. An effective treatment should deplete single positive thymocytes to an extent that engraftment and the formation of mixed chimerism is optimized in the absence of the creation of hematopoietic space, e.g., hematopoietic space created by whole body irradiation. In preferred embodiments the subject's single positive thymocytes are depleted by at least 20, 40, 60, or 80%. Treatments which result in between 10 and 90% depletion are preferred. The length of the treatment will vary with dosage and the effectiveness of the agent but will generally be less than 60, 30, or 15 days. The treatment should last at least 7, and more preferably 10, or 14 days in length. In preferred courses of treatment, e.g., the administration of an immunosupressive chemical or drug, e.g., cyclosporine, should last between 7 and 30 days. The treatment, e.g., the administration of cyclosporin, should be started at a time such that it is completed prior to the administration of stem cells. Administration of the agent should be on a daily basis or as needed to maintain a level of the agent which allows the desired level of depletion. A particularly preferred treatment is the administration of an immunosuppresive chemical, e.g., cyclosporin, for more than 7 and less than 30 days. A useful regimen in rodents is 20 mg/kg/day cyclosporin for 14 days ending on the third day before administration of stem cells.
Thus, in preferred embodiments a quantity of hematopoietic stem cells sufficient to induce tolerance, without the need for hematopoietic space-creating irradiation, is administered to the recipient. In preferred embodiments the number of donor hematopoietic cells is at least twice, is at least equal to, or is at least 75, 50, or 25% as great as, the number of bone marrow cells found in an adult of the recipient species. In preferred embodiments the number of donor hematopoietic stem cells is at least twice, is at least equal to, or is at least 75, 50, or 25% as great as, the number of bone marrow hematopoietic stem cells found in an adult of the recipient species. In the case where an inbred population of the donor species exists, e.g., where the donor species is miniature swine, the number of available donor cells is not limited to the number of cells which can be obtained from a single animal. Thus, in such cases, the donor cells administered to the recipient can come from more than one, e.g., from two, three, four, or more animals. As is discussed below the donor stem cells can be provided in two or more separate administrations.
In preferred embodiments, mixed chimerism is induced in the recipient and the state of mixed chimerism is formed in the absence of the induction of hematopoietic space, e.g., in the absence of hematopoietic space created by space creating irradiation, e.g., whole body irradiation.
The number of donor cells administered to the recipient can be increased by either increasing the number of stem cells provided in a particular administration or by providing repeated administrations of donor stem cells.
Repeated stem cell administration can promote engraftment, mixed chimerism, and long-term deletional tolerance in graft recipients. Thus, the invention also includes methods in which multiple hematopoietic stem cell administrations are provided to a recipient. Multiple administration can substantially reduce or eliminate the need for hematopoietic space-creating irradiation. Administrations can be given prior to, at the time of, or after graft implantation. In preferred embodiments multiple administrations of stem cells are provided prior to the implantation of a graft. Two, three, four, five, or more administrations can be provided. The period between administrations of hematopoietic stem cells can be varied. In preferred embodiments a subsequent administration of hematopoietic stem cell is provided: at least two days, one week, one month, or six months after the previous administration of stem cells, when the recipient begins to show signs of host lymphocyte response to donor antigen; when the level of chimerism decreases; when the level of chimerism falls below a predetermined value; when the level of chimerism reaches or falls below a level where staining with a monoclonal antibody specific for a donor PBMC antigen is equal to or falls below staining with an isotype control which does not bind to PBMC's, e.g. when the donor specific monoclonal sta

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mixed chimerism and tolerance does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mixed chimerism and tolerance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mixed chimerism and tolerance will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3201726

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.