Mirror with split ball mount and hold-open device

Optical: systems and elements – Mirror – With support

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S871000, C359S875000, C359S876000, C359S877000

Reexamination Certificate

active

06467919

ABSTRACT:

BACKGROUND
The present invention relates to mirrors mounted for angular adjustment on ball mounts, and more particularly relates to a mirror having a ball mount adapted to receive laterally-laid-in wiring to facilitate assembly, but that is further constructed to provide a consistent torsional adjustment force in the form of a robust and durable angularly-adjustable ball mount.
Most modem vehicles include an interior rearview mirror mounted to a center and top of a front windshield by an adjustable ball mount that permits angular adjustment of the mirror. Many if not most of these modem interior rearview mirrors include components electrically connected to the vehicle electrical system (e.g. for power as well as to a controller or processor in the instrument panel). For example, modem mirrors often include electrically-operated glare-reducing layers, keyless entry, day
ight sensing, temperature sensing, and communication devices. Typically, the electrical connection is done with wiring that extends from the mirror along or through a windshield mount up under a headliner of the vehicle and then through a vehicle body pillar to the vehicle's main electrical system. Routing the wiring from the mirror up to the headliner can be an appearance problem when the wiring is routed around an adjustment ball connection (i.e. outside of the ball connection), because the wiring is in a position where it is relatively easily seen. Covers and wire shields can be used to hide the wiring, but when the wiring is routed around the ball, the covers and shields tend to result in a bulky and undesirably large structure.
Many modern vehicles often include a tubular component with a bored ball or apertured connection to permit routing of wiring. However, threading wires through the passageway is cumbersome and not as efficient for assembly as desired, since wires must be pushed through. Further, the passageway is usually not large enough for an electrical connector to pass through, such that the electrical connector must be attached to the wires (i.e. “blocking”) after extending the wires through the tubular component. This can cause assembly inefficiencies, including assembly defects such as poor attachment of the connector to the conductors in the wiring, since the tubular component is somewhat “in the way”. Further, such defects occur when the assembly is more expensive (i.e. a significant part of the assembly is finished) and also at a time when the defects are more difficult to fix (i.e. the connector must be ripped off the wiring before the wiring can be removed and new wiring put in place).
Split ball connectors in mirror constructions would be advantageous in that they facilitate assembly by permitting wiring to be laid into the ball connection from a side of the ball connection, instead of having to thread the wiring through the ball connection longitudinally. However, a major problem with split ball connectors is their inability to maintain a consistent and high quality torsional friction force that resists yet permits small angular adjustment. The torsional force must be maintained for safety reasons, so that a mirror stays in an adjusted position. Further, the feel of adjustment to a vehicle driver can be very important. In particular, a gritty or non-uniform feel during mirror adjustment can give a vehicle driver a false impression of poor vehicle quality. Split ball connectors often have difficulty with all of these problems. For example, split ball connectors have an edge at the split that can rub and scrape in a non-uniform manner, giving a “gritty” feel upon adjustment, and/or can let dirt and dust into the bearing interface also causing a non-uniform frictional force upon adjustment, and/or can cause an unacceptable “grip-and-slip” type movement. Also, split ball connectors can creep and change shape and/or may experience a change in physical properties, with time, temperature, and stress, resulting in noticeable and unacceptable changes in torsional frictional resistance. In particular, the zinc die cast materials often used for mirror mounts can have this problem. It is not considered cost-effective nor feasible in the present competitive automotive industry to use costly high-grade materials that will not be adversely affected by time, temperature, and stress. Nor is it feasible to “over-design” parts by significantly increasing their size and structure to solve these problems, since the added weight and added cost of material are problematic, and further the increased size can adversely affect a vehicle driver's ability to see past the mirror out the vehicle front window.
Accordingly, an apparatus solving the aforementioned problems and having the aforementioned advantages is desired.
SUMMARY OF THE PRESENT INVENTION
In one aspect of the present invention, a mirror construction for attachment to a vehicle proximate a vehicle front window includes an interior rearview mirror assembly, and a mirror mount adapted for attachment to a vehicle component. A ball connection is provided including a ball section on one of the mirror assembly and the mirror mount, and including a socket on the other of the mirror assembly and the mirror mount. The ball section has a sphere-defining surface that slidably angularly engages a mating surface on the socket to permit angular adjustment and further has an open portion that interrupts the sphere-defining surface to permit wiring to be laid laterally inside the ball section to facilitate assembly. The ball connection further includes a holder for holding open the open portion so that the ball section maintains a desired shape and the ball connection maintains a desired torsional frictional resistance to angular adjustment even after extended use.
In another aspect of the present invention, a mirror construction includes an interior rearview mirror assembly having a housing having a socket, and includes a mirror mount adapted for attachment to a vehicle component and including a ball section. The ball section angularly and adjustably engages the socket to form a ball connection, the ball section having a radially open portion permit wiring to be laid laterally into the ball section to facilitate assembly. The mirror construction further includes a holder engaging the ball section for holding a shape of the ball section so that the ball section cannot distort and collapse over time.
In another aspect of the present invention, a method of constructing a mirror comprising steps of providing an interior rearview mirror assembly including a socket, and a mirror mount adapted for attachment to a vehicle component, the mirror mount including a ball section with a radially-open portion. The method further includes laying wiring into the radially-open portion of the ball section, and placing a holder in the open portion to hold the open portion in an open condition so that the ball connection cannot distort and collapse over time. The method still further includes operably fitting the ball section into the socket for angular adjustment, with the ball engaging the socket with sufficient friction to hold the rearview mirror in selected angular positions.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.


REFERENCES:
patent: 4225212 (1980-09-01), Grabowski
patent: 6068380 (2000-05-01), Lynn et al.
patent: 6326613 (2001-12-01), Heslin et al.
Exhibit A discloses photographs 1-7 of a prior art mount for an automotive rearview mirror, manufactured and sold by Reitter & Schefenacker, GMBH & Co, KG, EckenerstreBe 2, 73730 Essignen, Germany, at least one year prior to the filing date of the present invention. The mirror mount includes a split ball portion that forms part of a ball mount, and is die-cast of a zinc alloy.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mirror with split ball mount and hold-open device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mirror with split ball mount and hold-open device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mirror with split ball mount and hold-open device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2980114

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.