Power plants – Fluid motor means driven by waste heat or by exhaust energy... – With supercharging means for engine
Reexamination Certificate
2000-09-07
2002-04-23
Koczo, Michael (Department: 3746)
Power plants
Fluid motor means driven by waste heat or by exhaust energy...
With supercharging means for engine
C060S604000, C060S618000, C060S624000
Reexamination Certificate
active
06374613
ABSTRACT:
FIELD OF APPLICATIONS
The present invention is characterized by a combination of vapor-to-mechanical energy converters driven by rapid heat transfer means able to instantaneously transfer energy from the products of combustion, or any heat source, to a thermodynamic fluid circulating inside an independent loop. This fluid moves inside the loop mainly as a result of its own expansion and transfers its energy to mechanical means through thermodynamic work-producing units or expanders. In this manner, the various components of this device constitute a special Miniaturized Waste Heat Engine (MWHE) able to recuperate and convert waste energy from combustion or heat sources into useful energy. By returning a significant fraction of this recuperated energy to the power system (for example in the form of mechanical or electrical energy), the usually unavoidable heat discharge into the environment is minimized, while pollutant emission can be significantly reduced at no energy cost for the power system.
To simplify the description of the working principles and methods of operation of this invention, an internal combustion engine (fueled with heavy or non-heavy fuels) is from now on considered to be the power system. However, any power system utilizing heat sources and producing waste heat as a result of their operation could utilize the techniques and methods described by this invention.
When this invention is applied to an internal combustion engine, the energy of the exhaust combustion gases (high temperature and mass flow rate) is converted into additional horsepower transferred directly to the engine load, via the engine crankshaft, and/or indirectly via special engine intake oxygen enhancing means.
The MWHE contains one or more vapor-to-mechanical energy converting systems, referred to hereafter as expanders; one or more instantaneous heat transfer systems, referred to hereafter as converters; one or more instantaneous vapor collapsing systems, referred to hereafter as imploders; and one or more air/oxygen enhancing systems, referred to hereafter as oxygenators.
In general the MWHE is formed by one or more converters coupled with a series of expanders including a vapor condensing system, or imploder, so as to form a thermodynamic cycle A converter (or multiple converters) returns the recuperated energy from the exhaust gases through one or more expanders in the form of mechanical energy, adding it to the power normally generated by the engine. Another converter (or the excess recuperated energy of a single converter) allows the pressurization of the engine intake manifold through the oxygenator, thereby providing excess oxygen to the air fuel mixture independently of the engine rotational speed, or revolutions per minute (RpM). By utilizing this particular oxygen enhancing feature, the engine performance can be significantly improved since air/oxygen is virtually pumped into the engine at all times, regardless of the RpM, at no cost. If this device is applied to a diesel fuel engine, the production of highly toxic particulate is almost eliminated since excess oxygen is always present during combustion, even when the engine is accelerating from idling speeds.
Therefore, the main application of this thermodynamic engine can be seen as an anti-pollution system, especially when applied to heavy fueled engines but also as a device able to significantly improve engine performance while reducing fuel consumption. Again, it is important to emphasize that the source of energy of this invention is constituted by heat that is normally irreversibly discharged into the environment.
PRIOR ART
Engine intake air-enhancement-systems are normally characterized by centrifugal turbo-compressors, or turbo-chargers, and by positive displacement air compressors. The centrifugal compressors are devices utilized to provide excess air to the engine allowing increased power output and generally improving the combustion. These devices improve the overall engine efficiency because they recuperate a fraction of the kinetic energy and pressure energy contained in the exhaust gases produced during combustion. Centrifugal compressors are widely used in Internal Combustion (IC) engine applications since they show reasonably good efficiencies when they operate at the proper speeds, are reasonably rugged, and last for the entire life of the engine. Air compressors for IC engines are generally formed by two counter-opposed sections containing the Exhaust Gas Wheel, “EGW,” and the Compressor Wheel, “CW,” connected by a common shaft. The EGW converts parts of the kinetic and pressure energy of the exhaust gas into shaft power. Since the CW is also mechanically connected to the same shaft, it converts the shaft power provided by the EGW into air pressure at the discharge of the CW. In this manner, the engine intake manifolds become pressurized and more air/oxygen is available to the engine. Thanks to these devices, it is possible to increase the amount of fuel injected in the combustion chamber and increase the overall engine power output. Unfortunately, the efficiency of the centrifugal compressors is optimized only for a significantly high range of rotational speed of the CW (generally greater than 30,000 RpM). Such speeds are only reached when the mass of exhaust gases (mass flow rate, grams-per-second), matches the optimized EGW RpM, so that the maximum torque is transferred through the shaft to the CW. This unavoidable sequence of events creates the conditions for a delay, called “turbo-lag,” imposed mainly by the fluid-mechanical inertia of the exhaust gases, the mechanical inertia of the EGW, CW, and many other factors. Due to the fact that the exhaust gases are a consequence of the combustion process, the engine experiences a significant delay between the time the fuel is injected and the time the proper quantity of oxygen in the combustion chamber is made available by the compressor. This delay provokes a severe drop in engine performance during acceleration, particularly from idling to higher RpM. In fact, during these phases there is not enough oxygen to complete combustion, therefore the production of pollutant emissions is significant while the engine performance is impaired. This condition exists for several seconds every time the engine accelerates and it becomes even more pronounced when the engine is severely loaded.
Normally, if the engine is idling and the accelerator pedal is suddenly pressed the fuel appears inside the combustion chambers almost instantaneously, but the availability of oxygen is completely insufficient to complete combustion. Eventually, the engine RpM changes from idling to the desired speed and an increasing mass flow of exhaust gases starts to provide enough torque to the centrifugal compressor, thereby the availability of oxygen becomes gradually sufficient. In fact, as time passes the CW reaches the proper RpM and air is finally compressed inside the intake manifold. To summarize, during acceleration the conventional turbo compressors (centrifugal compressors in particular) are unable to provide oxygen to the engine for a time period depending on engine load and rate of acceleration. During this time a severe production of particulate (especially when heavy fuels are considered) is discharged into the environment. To eliminate, or minimize, the turbo-lag phenomena, some engine manufacturers utilize different mechanical compressors (i.e. positive displacement compressors) which show a reasonable efficiency at low RpM. These mechanical systems are coupled with the engine crankshaft, thereby utilizing power from the engine to operate (less efficient). When these devices are utilized the production of pollution is reduced during acceleration, but unfortunately engine performance is also penalized, especially at high engine RpM. The only commercial alternative widely used (for example for large diesel engines) is to utilize two different air-enhancing systems in tandem Therefore, a positive displacement air compressor, utilizing power from the engine, and a centrifugal compressor a
LandOfFree
Miniaturized waste heat engine does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Miniaturized waste heat engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Miniaturized waste heat engine will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2836070