Miniaturized position sensor having photolithographic coils...

Electricity: measuring and testing – Magnetic – Displacement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S424000, C128S899000

Reexamination Certificate

active

06201387

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to object tracking systems, and specifically to non-contact, electromagnetic methods and devices for tracking the position and orientation of a medical probe.
BACKGROUND OF THE INVENTION
In many medical procedures, probes, such as endoscopes and catheters, are inserted into a patient's body. Such probes are used for a large variety of procedures including irreversible surgical actions, such as ablation and taking of tissue samples. Therefore, it is necessary to have accurate information on the position and orientation of the probe within the patient's body.
Electromagnetic position determining systems provide a convenient method of receiving accurate information on the position and orientation of intra-body objects, and allow accurate tracking of these objects. Such systems are described for example in U.S. Pat. Nos. 5,558,091, 5,391,199 and 5,443,489, and in International Patent Publications WO94/04938 and WO96/05768, whose disclosures are incorporated herein by reference. These systems determine the coordinates of a probe using one or more field sensors, such as a Hall effect device, coils or other antennas carried on the probe. The transducers are typically located at or adjacent the distal end of the probe, and/or along the length of the probe. Therefore, the transducers are preferably made as small as possible so as to fit into the probe without interfering with the probe's maneuverability or increasing its size unduly.
U.S. Pat. No. 5,558,091 describes a Hall effect sensor assembly of a cube shape which includes three mutually orthogonal, thin galvanomagnetic films. This sensor assembly is preferably of dimensions about 3×0.75×0.75 mm. The 5,558,091 Patent further describes another Hall effect sensor assembly which includes three field sensing elements in the form of semiconductor chips. Each chip includes one or more elongated bars of a magnetoresistive material. Each such chip is sensitive to magnetic field components in the direction of the bar. This assembly preferably has a diameter of 0.8 mm or less. However, such chips suffer from nonlinearities, saturation effects, hysteresis and temperature drifts.
Therefore, most magnetic position determining systems use sensors formed of miniature coils that include a large number of turns of an electrically conducting wire. Such coils are described, for example, in PCT publications PCT/GB93/01736, WO94/04938 and WO96/05768, in the above mentioned U.S. Pat. No. 5,391,199, and in PCT publication PCT/IL97/00009, which is assigned to the assignee of the present application, all of which are incorporated herein by reference. The performance of a sensor coil is dependent on its inductance, which is a function of the number of turns of the coil times the cross sectional area of the coil. Therefore, in planning a miniature coil for use within a surgical probe, for example, it is generally necessary to make a compromise between performance and the size of the coil. Such coils typically have minimum dimensions of 0.6×0.6×0.6 mm and more generally of 0.8×0.8×0.8 mm. Smaller coils of the same type would not provide acceptable performance and are also hard to manufacture.
In order to determine both translational and rotational coordinates, some position determining systems, such as the system described in the above-mentioned PCT publication WO96/05768, use three sensor coils, having respective axes that are mutually linearly independent, preferably mutually orthogonal. Preferably, these three coils are packaged together to form a sensor assembly, which is used to provide six-dimensional position and orientation coordinate readings. The use of an assembly which has the three coils within one package allows easy insertion and/or attachment of the coils to catheters. Also, the assembly provides exact positioning of the coils relative to each other, thus simplifying the calibration of position determining systems using the coils. Generally, the coils are enclosed in a cylindrical-shaped case, which protects the coils from the surroundings.
In the system of the '768 publication, this assembly typically has a length of about 6 mm and a diameter of about 1.3 mm. Because the axes of the coils need to be generally mutually orthogonal in order to achieve accurate position sensing in all six dimensions, it is not possible to make the diameter of the assembly much smaller.
Although this coil assembly fits into most medical probes, in some cases coils of equivalent performance and smaller width are desired. For example, PCT patent application PCT/IL97/00061, which is assigned to the assignee of the present invention and is incorporated herein by reference, describes a method of enhancing the accuracy of position determination of an endoscope that includes miniature position sensing coils, by distancing the coils from metallic apparatus within the endoscope. If the coil assembly can be made with a smaller width, it is then possible to increase the separation between the miniature coils and the metallic apparatus, and thus achieve better accuracy from the position determining system.
Reducing the width of the coil assembly also allows position determining systems to be used with narrower probes, which generally have superior maneuverability and ease of access to remote locations. Alternatively, reducing the width of the coil assembly allows the assembly to occupy a smaller portion of the cross-sectional area of the probe, leaving more space for functional apparatus and/or working channels along the probe.
Coils made by photolithography or VLSI procedures are known in the art. In the following disclosure and in the claims, these coils are referred to as photolithographic coils. Photolithographic coils are generally made in the form of a spiral conductor printed on a substrate of plastic, ceramic or semiconductor material. Such coils conventionally comprise up to four overlapping spiral layers, using currently available fabrication techniques.
Photolithographic coils or antennas are also commonly used in contactless smart cards, as are known in the art. These cards inductively communicate with and receive power from a reader circuit through a photolithographic coil or antenna embedded in the card. Because smart cards are limited in thickness to less than 0.8 mm, they generally include only a single coil, whose axis is necessarily perpendicular to the plane of the card. To communicate with the reader, the smart card must be properly oriented, so that the coil axis is aligned with a magnetic field generated by the reader, in order to achieve proper coupling.
SUMMARY OF THE INVENTION
It is an object of some aspects of the present invention to provide a sensor coil with reduced thickness but high sensitivity and/or q-factor.
It is another object of some aspects of the present invention to provide a coil assembly including three orthogonal coils having a narrow, elongate shape.
In preferred embodiments of the present invention, a coil assembly comprises three coils of which at least one, and preferably two, comprise photolithographic coils. The coils have axes which are mutually linearly independent, preferably the axes are mutually substantially orthogonal. The use of these photolithographic coils allows forming coil assemblies with reduced diameter, width and/or depth, as described below.
In some of these preferred embodiments, two of the coils comprise long, narrow photolithographic coils. The length of the coils compensate for the narrow width, so that the coil encompasses a large enough area to give sufficient inductance for use as a position sensor in a position determining system. Preferably, the width of the coil is less than 0.8 mm, most preferably less than 0.6 mm. The thickness of the coils is preferably limited only by the photolithographic process and is generally about 0.3 mm. In a preferred embodiment of the present invention, the photolithographic coils are produced on a flexible substrate, so that the assembly does not restri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Miniaturized position sensor having photolithographic coils... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Miniaturized position sensor having photolithographic coils..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Miniaturized position sensor having photolithographic coils... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2479300

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.