Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...
Reexamination Certificate
2000-04-10
2001-06-05
Ogden, Necholus (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
For cleaning a specific substrate or removing a specific...
C510S424000, C510S426000, C510S427000, C510S428000, C510S473000
Reexamination Certificate
active
06242406
ABSTRACT:
FIELD
The present invention relates to detergent compositions comprising a select amount of a cellulose derivative and mid-chain branched surfactants. Such mid-chain branched surfactants are mixtures of longer alkyl chain mid-chain branched surfactants derived from mid-chain branched primary alkyl hydrophobic groups and selected hydrophilic groups, said mixtures comprising mid-chain branched primary alkyl hydrophobic groups having an average of greater than 14.5 carbon atoms, preferably greater than about 15 carbon atoms, with preferred surfactants herein being mid-chain branched primary alkyl sulfate surfactants and mid-chain branched primary alkyl alkoxylated sulfate surfactants. Thus, the present invention relates to a combination of cellulose derivatives and mixtures of mid-chain branched surfactants which are useful in laundry and cleaning compositions, especially granular and liquid detergent compositions.
BACKGROUND
Conventional detersive surfactants comprise molecules having a water-solubilizing substituent (hydrophilic group) and an oleophilic substituent (hydrophobic group). Such surfactants typically comprise hydrophilic groups such as carboxylate, sulfate, sulfonate, amine oxide, polyoxyethylene, and the like, attached to an alkyl, alkenyl or alkaryl hydrophobe usually containing from about 10 to about 20 carbon atoms. Accordingly, the manufacturer of such surfactants must have access to a source of hydrophobe groups to which the desired hydrophile can be attached by chemical means. The earliest source of hydrophobe groups comprised the natural fats and oils, which were converted into soaps (i.e., carboxylate hydrophile) by saponification with base. Coconut oil and palm oil are still used to manufacture soap, as well as to manufacture the alkyl sulfate (“AS”) class of surfactants. Other hydrophobes are available from petrochemicals, including alkylated benzene which is used to manufacture alkyl benzene sulfonate surfactants (“LAS”).
The literature asserts that certain branched hydrophobes can be used to advantage in the manufacture of alkyl sulfate detersive surfactants; see, for example, U.S. Pat. No. 3,480,556 to deWitt, et al., Nov. 25, 1969. However, it has been determined that the beta-branched surfactants described in the '556 patent are inferior with respect to certain solubility parameters, as evidenced by their Krafflt temperatures. It has further been determined that surfactants having branching towards the center of carbon chain of the hydrophobe have much lower Krafft temperatures. See: “The Aqueous Phase Behavior of Surfactants”, R. G. Laughlin, Academic Press, N.Y. (1994) p. 347. Accordingly, it has now been determined that such surfactants are preferred for use especially under cool or cold water washing conditions (e.g., 20° C.-5° C.).
Generally, alkyl sulfates are well known to those skilled in the art of detersive surfactants. Alkyl sulfates were developed as a functional improvement over traditional soap surfactants and have been found to possess improved solubility and surfactant characteristics. Linear alkyl sulfates are the most commonly used of the alkyl sulfate surfactants and are the easiest to obtain. For example, long-chain linear alkyl sulfates, such as tallow alkyl sulfate, have been used in laundry detergents. However, these have significant cleaning performance limitations, especially with the trend to lower wash temperatures.
Also, as noted hereinbefore, the 2-alkyl or “beta” branched alkyl sulfate are known. In addition to U.S. Pat. No. 3,480,556 discussed above, more recently EP 439,316, published Jul. 31, 1991, and EP 684,300, published Nov. 29, 1995, describe these beta-branched alkyl sulfates. Other recent scientific papers in the area of branched alkyl sulfates include R. Varadaraj et al., J. Phys. Chem., Vol. 95, (1991), pp 1671-1676 which describes the surface tensions of a variety of “linear Guerbet” and “branched Guerbet”-class surfactants including alkyl sulfates. —Linear Guerbet” types are essentially “Y-shaped”, with 2-positon branching which is a long straight chain as in:
wherein Z is, for example, OSO3Na. “Branched Guerbet” types are likewise 2-position branched, but also have additional branching substitution, as in:
wherein Z is, for example, OSO3Na. See also Varadaraj et al., J. Colloid and Interface Sci., Vol. 140, (1990), pp 31-34 relating to foaming data for surfactants which include C12 and C13 alkyl sulfates containing 3 and 4 methyl branches, respectively (see especially p. 32).
Known alkyl sulfates also include:
1. Primary akyl sulfates derived from alcohols made by Oxo reaction on propylene or n-butylene oligomers, for example as described in U.S. Pat. No. 5,245,072 assigned to Mobil Corp.
2. Primary alkyl sulfates derived from oleic-containing lipids, for example the so-called “isostearyl” types; see EP 401,462 A, assigned to Henkel, published Dec. 12, 1990, which describes certain isostearyl alcohols and ethoxylated isostearyl alcohols and their sulfation to produce the corresponding alkyl sulfates such as sodium isostearyl sulfate.
3. Primary alkyl sulfates, for example the so-called “tridecyl” types derived from oligomerizing propylene with an acid catalyst followed by Oxo reaction;
4. Primary alkyl sulfates derived from “Neodol” or “Dobanol” process alcohols: these are Oxo products of linear internal olefins or are Oxo products of linear alpha-olefins. The olefins are derived by ethylene oligomerization to form alpha-olefins which are used directly or are isomerized to internal olefins and metathesized to give internal olefins of differering chain-lengths;
5. Primary alkyl sulfates derived from the use of “Neodor” or “Dobanol” type catalysts on internal olefins derived from feedstocks which differ from those normally used to make “Neodor” or “Dobanol” alcohols, the internal olefins being derived from dehydrogenation of paraffins from petroleum;
6. Primary alkyl sulfates derived from conventional (e.g., high-pressure, cobalt-catalyzed) Oxo reaction on internal olefins, the internal olefins being derived from dehydrogenation of paraffins from petroleum;
7. Primary alkyl sulfates derived from conventional (e.g., high-pressure, cobaltcatalyzed) Oxo reaction on alpha-lefins;
8. Primary alkyl sulfates derived from natural linear fatty alcohols such as those commercially available from Procter & Gamble Co.;
9. Primary alkyl sulfates derived from Ziegler alcohols such as those commercially available from Albermarle;
10. Primary alkyl sulfates derived from reaction of normal alcohols with a Guerbet catalyst (the function of this well-known catalyst is to dehydrogenate two moles of normal alcohol to the corresponding aldehyde, condense them in an aldol condensation, and dehydrate the product which is an alpha, beta- unsaturated aidehyde which is then hydrogenated to the 2-alkyl branched primary alcohol, all in one reaction “pot”);
11. Primary alkyl sulfates derived from dimerization of isobutylene to form 2,4,4′-trimethyl-1-pentene which on Oxo reaction to the aldehyde, aldol dimerization, dehydration and reduction gives alcohols;
12. Secondary alkyl sulfates derived from sulfuric acid addition to alpha- or internal- olefins;
13. Primary alkyl sulfates derived from oxidation of paraffins by steps of (a) oxidizing the paraffin to form a fatty carboxylic acid; and (b) reducing the carboxylic acid to the corresponding primary alcohol;
14. Secondary alkyl sulfates derived from direct oxidation of paraffins to form secondary alcohols;
15. Primary or secondary alkyl sulfates derived from various plasticizer alcohols, typically by Oxo reaction on an olefin, aldol condensation, dehydration and hydrogenation (examples of suitable Oxo catalysts are the conventional Co, or more recently, Rh catalysts); and
16. Primary or Secondary alkyl sulfates other than of linear primary type, for example phytol, famesol, isolated from natural product sources.
Beyond such known alkyl sulfates, however, is a vast array of other possible alkyl sulfate compounds and mixtures whose physical properties may or may not make them
Katsuda Rinko
Kawasaki Eriko
Murata Susumu
Cook C. Brant
Echler Sr. Richard S.
Ogden Necholus
The Procter & Gamble & Company
Zerby Kim W.
LandOfFree
Mid-chain branched surfactants with cellulose derivatives does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Mid-chain branched surfactants with cellulose derivatives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mid-chain branched surfactants with cellulose derivatives will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2434796