Wave transmission lines and networks – Resonators – Dielectric type
Patent
1994-09-29
1998-01-27
Pascal, Robert
Wave transmission lines and networks
Resonators
Dielectric type
333227, 331107DP, H01P 710
Patent
active
057126054
ABSTRACT:
A simplified apparatus and a design method for providing microwave resonators having high Q factors. The apparatus includes a resonant microwave cavity having three mutually orthogonal dimensions and a low loss dielectric body substantially enclosing each dimension of the resonant microwave cavity. To further increase Q-factor, the apparatus of the invention preferably includes a plurality of resonant microwave cavities and a plurality of low loss dielectric bodies each substantially enclosing a respective one of the microwave resonant cavities. In some embodiments the low loss dielectric bodies are arranged in a stack. In other embodiments the low loss dielectric bodies are concentrically arranged. The design method includes selecting a resonant mode frequency and a height dimension of a microwave resonant cavity, extending radial bessel function solutions along a radius of the cavity to determine radial locations of electric field nulls of a resonant mode of microwaves, and substantially positioning concentric dielectric tube portions of the bodies at the radial locations of the electric field nulls. Similarly, the method of the invention includes extending cavity harmonic function solutions along the axis of symmetry of the cavity to determine axial locations of electric field nulls of the resonant mode of microwaves, and substantially positioning dielectric plate portions of the bodies at the axial locations of the electric field nulls.
REFERENCES:
patent: Re32768 (1988-10-01), D'Avello et al.
patent: 5200721 (1993-04-01), Mansour
Jiao, X. A. et al., "Whispering--Gallery Modes of Dielectric Structures: Applications to MM--Wave Band-Stop Filters", IEEE Trans on Microwave Theory & Techniques, MTT35, No. 12, Dec. 1987, pp. 1169-1175.
Vedrenne, C. et al., "Whispering--gallery modes of dielectric resonators", IEE Proceedings Section AAI, vol. 129, No. 4, part H, Aug. 1982, pp. 183-187, Old Woking, Surrey, GB.
C. J. Maggiore, et al. "Low-loss microwave cavity using layered-dielectric materials," Applied Physics Letters, vol. 64, No. 11, Mar. 14, 1994, pp. 1451-1453.
M. P. Mladenovic, et al. "Calculation of resonances of microwave resonator loaded with inhomogenous dielectric layer," Electronics Letters, vol. 27, No. 24, Nov. 21, 1991, pp. 2215-2216.
C. A. Flory and R. C. Taber, "Microwave Oscillators Incorporating Cryogenic Sapphire Dielectric Resonators", Jun. 2, 1993 IEEE International Frequency Control Symposium, pp. 763-773.
M. E. Tobar, A. J. Giles, S. Edwards and J. Searls, "High-Q TE Stabilized Sapphire Microwave Resonators For Low Noise Applications", Forty-Seventh annual Symposium on Frequency Control, pp. 1-8.
D. G. Blair and I. N. Evans, "High-Q Microwave Properties of a Sapphire Ring Resonator", J. Phys.D: Appl. Phys., 15 (1962) pp. 1651-1656.
G. John Dick and David G. Santiago, "Microwave Frequency Discriminator with a Cryogenic Sapphire Resonator for Ultra-Low Phase Noise", 6th European Frequency & Time Forum, 1989.
G. J. Dick and D. M. Strayer, "Measurement and Analysis of Cryogenic Sapphire Dielectric Resonators and DRO's", 4th Annual Frequency Control Symposium, 1987, pp. 487-491.
David G. Santiago and G. John Dick, "Closed Loop Tests of the Nasa Sapphire Phase Stabilizer", 1993 IEEE International Frequency Control Symposium, pp. 774-777.
G. John Dick and Jon Sanders, "Measurement and Analysis of a Microwave Oscillator Stabilized by a Sapphire Dielectric Ring Resonator for Ultra-Low Noise", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 37, No. 5, Sep., 1990, pp. 339-346.
R. Comte, S. Verdeyme and P. Guillon, "New Concept for Low-Loss Microwave Devices", Electronics Letters, 3 Mar. 1994, pp. 419-420.
C. J. Maggiore, A. M. Clogston, G. Spalek, W. C. Sailor, and F. M. Mueller, "Low-Loss Microwave Cavity Using Layered-Dielectric Materials", Appl. Phys. Lett. 64 (11), 14 Mar. 1994, pp. 1451-1453.
J. D. Jackson, "Classical Electrodynamics (Resonant Cavities)", John Wiley & Sons, New York, (1975), Chapter 8, pp. 353-357.
Flory Curt A.
Taber Robert C.
Hewlett-Packard Co.
Lenell Jack A.
Pascal Robert
Vu David
LandOfFree
Microwave resonator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Microwave resonator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microwave resonator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-345489