Microwave cooking grill and steamer

Electric heating – Microwave heating – Cookware

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S730000, C219S732000, C219S734000, C099SDIG014, C426S243000

Reexamination Certificate

active

06229131

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a grilling apparatus for use in a microwave oven, and, in a preferred embodiment, to a continuous conductive grill element loop designed to grill food products in a microwave oven without substantial arcing and/or overheating. The continuous conductive grill element loops of the present invention can be used alone or in combination with other grill elements of the present invention to simultaneously grill and cook food.
The present invention also relates to a microwave grilling and steaming apparatus with which a grill element can be utilized. More particularly, in a preferred embodiment, the present invention relates to a microwave cooking grill and steamer having a continuous conductive grill element loop which is designed to grill food products in a microwave oven without substantial arcing and/or overheating, and which is designed to steam food in a microwave oven by converting a quantity of water contained within the apparatus to steam. The loop can be secured to a grilling surface of a rack which is opposite a steaming surface on the rack.
BACKGROUND OF THE INVENTION
Microwave ovens have become increasingly popular in recent years due in large part to the speed with which a conventional microwave oven can cook certain foods. Microwave ovens produce high frequency, electromagnetic energy fields which cause certain molecules to oscillate at a greater rate thereby producing heat. For example, a water molecule has a dipole which absorbs microwave energy and indirectly converts that microwave energy to thermal energy. The heat produced by the interaction of microwave energy and water molecules is generally not greater than about 100° C. because the water evaporates at that point. Many food substances comprise sufficient quantities of water, or other microwave absorbing materials, to make them susceptible to microwave cooking.
In a conventional oven, electricity, gas, wood, etc. is converted to thermal energy. The thermal energy is transmitted to the air within the oven, the oven walls, the oven racks, the food being cooked and the container the food is being cooked in. Additionally, conventional ovens operate by heating the outside of the food being cooked and wherein the interior portion of the food being cooked is heated by the conduction of thermal energy from the exterior surface of the food to the interior. Cooking food from the exterior surface inward is both slow and inefficient because, as mentioned briefly above, the entire interior of the oven and all the contents of the oven must be heated. However, conventional ovens, while slow and generally energy inefficient, have one perceived advantage over conventional microwave ovens. Because the thermal energy envelopes the exterior of the food being cooked it is often possible to “brown” and/or “crisp” the exterior of the food product. It has heretofore been difficult to brown or crisp food in a conventional microwave oven.
Microwave ovens, which typically operate at 2450 MHZ, supply microwave energy which is absorbed by the “lossy” component of foods. A lossy component is any portion of food, or other product, which absorbs microwave energy and converts at least a portion of that microwave energy to thermal energy. Microwave ovens are typically designed so that the microwave energy is not absorbed by the interior surfaces of the microwave. Thus, microwave energy does not generally heat the interior surfaces of the microwave oven. While the microwave cooking process is energy efficient, the exterior of the food product is typically cooked at the same rate as the interior of the food. Thus, browning and/or crisping of the food's exterior generally does not occur in a microwave oven.
There have been many attempts to rectify this shortcoming of microwave ovens, i.e., to brown and/or crisp food while cooking it in a microwave oven. For example, U.S. Pat. No. 5,493,103, which issued on Feb. 20, 1996 to Kuhn, discloses a baking utensil which essentially surrounds the food being cooked with a layer of material containing ferrite particles. The ferrite particles absorb microwave energy, and convert it to thermal energy until the Curie temperature of the ferrite is reached. The Curie temperature is a characteristic of the ferrite and different particles can be selected depending upon their Curie temperatures and the desired cooking results. When the Curie temperature is reached the particulate ferrite layer reflects excess microwave energy away from the food.
The process described by Kuhn is inherently inefficient in that some of the microwave energy is reflected away from the food. Moreover, because the food is completely surrounded by a particulate ferrite layer, the microwave energy is not transmitted directly to the food but must generally be converted to thermal energy. The conversion of microwave energy to thermal energy essentially eliminates the benefits of microwave cooking, i.e., the speed associated with the direct absorption of microwave energy by molecules in the food being cooked. Thus, while it may be possible to shield food from microwave energy and convert the microwave energy to thermal energy, this process essentially converts the microwave oven to an inefficient conventional thermal conduction oven.
U.S. Pat. No. 5,396,052, which issued on Mar. 7, 1995 to Betcavich, et al. discloses a cooking pot having a lid wherein the base material of the pot and lid is essentially transparent to microwave energy. The interior of the cooking pot is glazed with a microwave absorbing material. The food inside of the pot is cooked by normal thermal conduction as the interior glaze both converts microwave energy to thermal energy and reflects excess microwave energy away from the food inside of the container. While this configuration may provide the desired browning and/or crisping on the exterior of the food, it does not retain the speed and energy efficiency of a conventional microwave oven.
As an alternative to completely encasing food in a microwave absorbing material, a suceptor layer, or layers, of microwave absorbing material have been used in an attempt to brown at least a portion of the exterior of food placed on the suceptor layer. In general, any material that converts microwave energy to thermal energy is considered a “suceptor”. However, the term suceptor is often used to refer to a layer of microwave absorbing material. For example, U.S. Pat. No. 4,542,274, which issued on Sep. 17, 1985 to Tanonis, et al. describes a microwave cooking pan, for example a pie pan, wherein a layer of plastic with magnetic particles disbursed evenly throughout is used as a heating layer. The heating layer converts microwave energy to thermal energy thereby browning at least a portion of one surface of the food placed thereupon.
Additionally, U.S. Pat. No. 5,144,106, which issued on Sep. 1, 1992 to Kearns, et al. uses a layer of cooking oil or fat as a suceptor. The oil or fat is separated from the food being cooked by a material which can conduct heat from the oil or fat to the food. The fat or oil absorbs microwave energy, converts it thermal energy which is conducted to the layer of material between the food and the oil. Thus, a surface is provided where the food can be cooked both by thermal conduction and microwave absorption. The fat or oil produces a temperature in excess of 100° C. on which to cook the food because fats and oils typically boil at a much higher temperature. A typical microwave oven can heat cooking oil or fat to a temperature of from about 125° C. to 225° C.
The references discussed above utilize flat, essentially continuous layers of material which absorb microwave energy, reflect microwave energy or both. Flat continuous sheets of suceptor material were generally preferred in the past to avoid the problem of “arcing” and/or localized overheating of the conductive element. Arcing, and localized overheating can burn food in the microwave oven, damage the microwave oven itself, and in extreme cases cause fires to start within the microwave oven. For exa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microwave cooking grill and steamer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microwave cooking grill and steamer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microwave cooking grill and steamer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2458295

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.