Chemistry: analytical and immunological testing – Involving an insoluble carrier for immobilizing immunochemicals – Carrier is inorganic
Reexamination Certificate
2005-11-21
2011-10-11
Jarrett, Lore (Department: 1772)
Chemistry: analytical and immunological testing
Involving an insoluble carrier for immobilizing immunochemicals
Carrier is inorganic
C422S021000, C435S287200
Reexamination Certificate
active
08034633
ABSTRACT:
The present invention provides for increasing fluorescence detection in surface assay systems while increasing kinetics of a bioreaction therein by providing low-power microwaves to irradiate metallic materials within the system in an amount sufficient to increase heat thereby affecting the kinetics of a bioreaction therein.
REFERENCES:
patent: 5017009 (1991-05-01), Schutt et al.
patent: 5449918 (1995-09-01), Krull et al.
patent: 5741462 (1998-04-01), Nova et al.
patent: 5866433 (1999-02-01), Schalkhammer et al.
patent: 6515040 (2003-02-01), Scola et al.
patent: 7253452 (2007-08-01), Steckel et al.
patent: 7348182 (2008-03-01), Martin et al.
patent: 7351590 (2008-04-01), Martin
patent: 7718445 (2010-05-01), Martin
patent: 2003/0082633 (2003-05-01), Martin et al.
patent: 2003/0228682 (2003-12-01), Lakowicz et al.
patent: 2004/0039158 (2004-02-01), Lakowicz et al.
patent: 2004/0160606 (2004-08-01), Lakowicz et al.
patent: 2005/0053974 (2005-03-01), Lakowicz et al.
patent: 2005/0202464 (2005-09-01), Lakowicz et al.
patent: 2006/0147927 (2006-07-01), Geddes et al.
patent: 2006/0256331 (2006-11-01), Lakowicz et al.
patent: 2007/0020182 (2007-01-01), Geddes et al.
patent: 2007/0269826 (2007-11-01), Geddes
patent: 2008/0096281 (2008-04-01), Geddes
patent: 2008/0215122 (2008-09-01), Geddes
patent: 2009/0004461 (2009-01-01), Geddes et al.
patent: 2009/0022766 (2009-01-01), Geddes
patent: 89/09408 (1989-10-01), None
patent: WO 2004/024191 (2004-03-01), None
patent: WO 2006/074130 (2006-07-01), None
Bange, A., Halsall, H. B., and Heineman, W. R. 2005. Microfluidic immunosensor systems.Biosens. Bioelectron. 20(12):2488-2503.
Gosling, J. P. 1990. A decade of development in immunoassay methodology.Clin. Chem., 36(8): 1408-1427.
Davidson, R. S.; Hilchenbach, M. M. 1990. The use of fluorescent probes in immunochemistry.Photochem. Photobiol., 52(2): 431-438.
Schweitzer, B.; Kingsmore, S. F. 2002. Measuring proteins on microarrays.Curr. Opin. Biotechnol., 13(1): 14-19.
Diamandis, E. P. 1988. Immunoassays with time-resolved fluorescence spectroscopy—principles and applications.Clin. Biochem., 21(3): 139-150.
Khosravi, M.; Diamandis, E. P. 1987 Immunofluorometry of choriogonadotropin by time-resolved fluorescence spectroscopy, with a new europium chelate as label.Clin. Chem., 33(11): 1993-1999.
Ullman, E. F.; Schwarzberg, M.; Rubenstein K. E. 1976. Fluorescent excitation transfer immunoassay—general method for determination of antigens.J. Biol. Chem., 251(14): 4172-4178.
Ozinskas, A. J.; Malak, H.; Joshi, J.; Szmacinski, H.; Britz, J.; Thompson, R. B. Koen, P. A. Lakowicz, J. R. 1993. Homogenous model immunoassay of thyroxine by phase-modulation fluorescence spectroscopy.Anal. Biochem., 213(2): 264-270.
Lakowicz, J. R; Maliwal, B.; Ozinskas, A. J.; Thompson, R. B. 1993. Fluorescence lifetime energy-transfer immunoassay quantified by phase-modulation fluorometry.Sensors and Actuators B, 12(1): 65-70.
Dandlike, W. B.; Saussure, V. A. 1970. Fluorescence polarization in immunochemistry.Immunochemistry, 7(9): 799-828.
Spencer, R. D.; Toledo, F. B.; Williams, B. T.; Yoss, N. L. 1973. Design, construction, and 2 applications for an automated flow-cell polarization fluorometer with digital read out-enzyme-inhibitor (antitrypsin) assay and antigen-antibody (insulin-insulin antiserum) assay.Clin. Chem., 19(8): 838-844.
Aslan, K.; Gryczynski I.; Malicka J.; Matveeva E.; Lakowicz, J.R.; Geddes, C.D. 2005. Metal-enhanced fluorescence: an emerging tool in biotechnology.Curr. Opin. Biotechnol., 16(1), 55-62.
Lakowicz J. R. (2001). Radiative decay engineering: Biophysical and biomedical applications.Anal. Biochem., 298(1) 1-24.
Lakowicz J. R., Shen Y., D'Auria S., Malicka J., Fang J., Grcyzynski Z.and Gryczynski I. (2002). Radiative decay engineering 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer.Anal. Biochem., 301(2) 261-277.
Lakowicz J.R.; Shen Y.; Gryczynski Z.; D'Auria S.; Gryczynski I. 2001. Intrinsic fluorescence from DNA can be enhanced by metallic particles.Biochem. Biophys. Res. Com., 286(5): 875-879.
Malicka J.; Gryczynski I.; Lakowicz J.R. 2003. DNA hybridization assays using metal-enhanced fluorescence.Biochem. Biophys. Res. Com., 306(1); 213-218.
Lakowicz J.R.; Malicka J.; D'Auria S.; Gryczynski I. 2003. Release of the self-quenching of fluorescence near silver metallic surfaces.Anal. Biochem. 320(1): 13-20.
Aslan, K.; Lakowicz, J.R.; Szmacinski, H.; Geddes, C.D. 2005. Enhanced ratiometric pH sensing using SNAFL-2 on silver island films: Metal-Enhanced Fluorescence Sensing.J. Fluorescence, 15(1): 37-40.
Malicka, J.; Gryczynski, I.; Geddes, C. D.; Lakowicz, J. R. 2003. Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging.J. Biomed. Opt., 8(3): 472-478.
Geddes C. D., Cao H., Gryczynski I., Gryczynski Z., Fang J., and Lakowicz J. R. (2003). Metal-enhanced fluorescence due to silver colloids on a planar surface: potential applications of indocyanine green to in vivo imaging.J. Phys. Chem. A, 107(28) 3443-3449.
Aslan, K.; Lakowicz, J.R.; Geddes, C.D. 2005. Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence.J. Phys. Chem. B., 109: 6247-6251.
Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. 2005. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence.J. Phys. Chem. B., 109(8): 3157-3162.
Parfenov, A.; Gryczynski, I.; Malicka, J.; Geddes, C. D.; Lakowicz, J. R. 2003. Enhanced fluorescence from fluorophores on fractal silver surfaces.J. Phys. Chem. B., 107(34): 8829-8833.
Geddes C.D.; Parfenov, A.; Lakowicz, J.R. (2003). Photodeposition of silver can result in metal-enhanced fluorescence.Applied Spectroscopy, 57(5), 526-531.
Geddes, C.D.; Parfenov, A.; Roll, D.; Fang, J.; Lakowicz, J. R. (2003) Electrochemical and laser deposition of silver for use in metal-enhanced fluorescence.Langmuir, 19(15), 6236-6241.
Aslan, K.; Badugu, R.; Lakowicz, J.R.; Geddes, C.D. 2005. Metal-enhanced fluorescence from plastic substrates.J. Fluorescence, 15(2): 99-104.
Geddes, C.D.; Parfenov, A.; Roll, D.; Gryczynski, I.; Malicka, J.; Lakowicz, J. R. 2004. Roughened silver electrodes for use in metal-enhanced fluorescence.Spectrochimica Acta Part A, 60(8-9), 1977-1982.
Geddes C. D. and Lakowicz J. R. (2002). Metal-enhanced fluorescence.J. Fluorescence, 12(2) 121-129.
Lakowicz, J. R. 2004. Radiative decay engineering 3. Surface plasmon-coupled directional emission.Anal. Biochem. 324:153-169.
Matveeva, E.; Gryczynski Z.; Malicka, J.; Gryczynski, I.; Lakowicz, J.R. 2004. Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces.Analytical Biochemistry, 334(2): 303-311.
Sridar, V. 1998. Microwave radiation as a catalyst for chemical reactions.Current Science, 74(5): 446-450.
Caddick, S. 1995. Microwave-assisted organic-reactions.Tetrahedron, 51(38): 10403-10432.
Lin, J.C.; Yuan, P.M.K.; Jung, D.T. 1998. Enhancement of anticancer drug delivery to the brain by microwave induced hyperthermia.Bioelectrochemistry and Bioenergetics, 47(2): 259-264.
Rhodes, A.; Jasani, B.; Balaton, A. J.; Barnes, D.M. ; Anderson, E. ; Bobrow, L. G.; Miller, K. D. 2001. Study of interlaboratory reliability and reproducibility of estrogen and progesterone receptor assays in Europe—Documentation of poor reliability and identification of insufficient microwave antigen retrieval time as a major contributory element of unreliable assays.American J. Clinical Pathology, 115 (1): 44-58.
Van Triest, B.; Loftus, B. M.; Pinedo, H. M.; Backus, H. H. J.; Schoenmakers, P.; Telleman F. 2000. Thymidylate synthase expression in patients with colorectal carcinoma using a polyclonal thymidylate synthase antibody in comparison to the TS 106 monoclonal antibody.J. Histochem. Cytochem., 48(6): 755-760.
Philippova T. M.; Novoselov, V. I.; Alekseev, S. I. 1994. Influence of microwaves on different types of receptors and the role of peroxidation of lipids on receptor-protein shedding.Bioelectromagnetics, 15 (3):
Fuierer Marianne
Jarrett Lore
Moore & Van Allen PLLC
University of Maryland Baltimore County
LandOfFree
Microwave accelerated assays does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Microwave accelerated assays, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microwave accelerated assays will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4287570