Microsystem module

Optical waveguides – With disengagable mechanical connector – Optical fiber to a nonfiber optical device connector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S052000, C385S147000, C359S819000, C359S831000, C359S836000

Reexamination Certificate

active

06416237

ABSTRACT:

The invention relates to a microsystem module in particular for application in microoptical systems, consisting of a body, on the surface of which provision is made for at least one functional area and support areas for attachment to adjacent components of a microsystem.
Such microsystem modules are to be used primarily in micro-optics in order to connect light sources and light conductors with each other, or to shape the light beam at the end of a light conductor or on the outlet of a light source in a special way, for example to have it bundled, collimated, diffracted or diverged. Such microsystem modules, however, can be used also elsewhere in microstructure systems, where certain functional areas, for example scanning areas have to be fixed in an exact spatial relation to the adjacent components.
Such a problem in the field of microoptics is known, for example from WO 92/06046 A1. A microoptical lens described there consists of an oblong glass fiber, which is shaped flattened on three longitudinal sides and rounded in the form of a cylinder jacket on the fourth longitudinal side.
With said known microoptical lens, the area rounded in the form of a cylinder jacket serves as an optically effective boundary area, whereas the area disposed opposite the area rounded in the form of a cylinder jacket serves as a plane support area for connection to adjacent components, which are here designed in the form of diode lasers whose emitted light is to be collimated. The diode lasers are here glued to the support area of the microoptical lens with a suitable adhesive or optical cement. This poses the risk that the microoptical lens is not exactly positioned as required for its function relative to the diode lasers. Furthermore, the sensitive emitter area of the diode laser may be damaged during gluing or cementing.
The correct positioning of a microoptical lens relative to the emitter of a diode laser becomes substantially more difficult if the side of the microoptical lens facing the diode laser has a shape deviating from the plane as well. Such microoptical lenses, which are intended as collimators for diode lasers, are known, for example from U.S. Pat. No. 5,181,224. Said known collimators can be connected to a diode laser, for example only with considerable measuring expenditure and, if need be, with the help of adapters or fitted pieces. Of course, it is just as difficult to connect such microoptical lenses with an exact fit to adjacent microoptical components elsewhere. Finally, the risk with such microoptical lenses is that the optically effective boundary areas, which protrude in a convex form and which are very sensitive, are damaged during transport, handling and mounting of the microoptical lens.
Therefore, the problem of the invention is to create a microsystem module of the type specified above which can be connected to adjacent components of a microstructure system with an extremely exact fit and in an exactly reproducible manner, whereby damage to the adjacent components and the sensitive functional areas of the microsystem module is avoided.
The object of the invention is a microsystem module in particular for use in microoptical systems, consisting of a body on the surface of which at least one functional area and support areas for attachment to adjacent components of a microsystem are provided, whereby said microsystem module is characterized in that
the support areas are arranged within the zone of the outwardly projecting surface areas of the body;
the functional areas are arranged in zones of the surface of the body which are set back relative to the support areas in the direction toward the interior of the body; and
the functional areas are arranged with extremely narrow tolerances and with dimensional stability relative to the support areas.
With the microsystem module as defined by the invention, the sensitive functional areas project nowhere outwardly beyond the outer contour of the module, but are set back behind the support areas and accordingly well-protected against damage by touching. Furthermore, they do not come into contact with the adjacent components during mounting, so that damage to the adjacent components, for example damage to the sensitive emitter of diode lasers is reliably prevented,. Owing to the fact that the support areas are arranged with extremely narrow tolerances and dimensional stability relative to the functional areas already in the course of their manufacture, mounting of the module with dimensional stability is highly facilitated because for mounting, only the support areas have to be arranged on the module with the correct relation to the boundary surfaces of the adjacent components. If such relation in terms of dimension is correct, the arrangement of the functional area relative to the adjacent components is automatically correct as well, provided, of course, the countersupport areas of said components are arranged with dimensional stability as well.
According to a useful further development of the invention provision is made in the support areas for positively locking elements for engaging corresponding positively locking elements on the adjacent components. Such positively locking elements, for example in the form of deepenings and projections and/or grooves and springs make it possible to fix the microsystem module with exact adjustment in all directions without requiring costly measurements for the adjustment.
Furthermore, provision is made according to the invention. that the functional areas and/or the support areas are smoothly polished. Dimensional deviations caused by roughness of the surfaces are avoided by polishing said areas. The dimensional relations between such polished areas could be exactly fixed except for a few nanometers.
Provision is made according to a particularly preferred embodiment of the invention that the body consists of optically transparent material and that the functional areas are designed in the form of optically effective boundary areas, The term “optics” is understood in the following to include all systems operating with electromagnetic waves in the range of the visible and invisible (ultraviolet, infrared) light, up to the-microwaves (millimeter waves). Optically transparent material is understood to include materials such as optical glass, quartz, germanium, ruby, optical plastics etc., which are suitable for letting through and to influence electromagnetic waves of said type. The light is refracted on the optically effective boundary areas, reflected by total reflection or by a reflecting coating, and diffracted by diffraction lines or diffraction gratings. The functional areas present on the microsystem module suitable for microoptical systems can be designed in different ways. For example, they can be designed in the form of concave or convex lens surfaces, whereby all lens shapes known from the field of microoptics can be produced. Likewise, plane surfaces that are inclined versus each other can be arranged in the functional areas for forming prisms, which refract or reflect the light. Furthermore, diffraction lines or diffraction gratings can be arranged in the functional area, which diffract the light passing through. Finally, the functional areas can be wholly or partly coated with a reflecting coating.
It is possible also, if need be, to arrange in each functional area a great number of functional elements in the form of lenses and/or prisms and/or diffraction lines and/or reflecting surfaces. So-called lens arrays can be produced in this way on one single microoptical module.
Special advantages are obtained if functional areas are arranged on the body on sides opposing each other diametrally, with the functional elements of said functional areas being optically correlated through the body. It is possible in this way to install on such a microoptical module optical systems which shape and further transmit the light passing through in all sorts of different ways.
A microoptical module designed according to the instruction of the invention can be designed, for example in the form of a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microsystem module does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microsystem module, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microsystem module will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2819234

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.