Microsurgical microscope system

Optical: systems and elements – Compound lens system – Microscope

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C248S281110

Reexamination Certificate

active

06833950

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a microsurgical microscope system with a stand and with a microscope arranged thereon, in which system the stand has a base part and a substantially horizontal parallelogram linkage with two substantially horizontal bars and first and second further bars connecting the horizontal bars, of which the first further bar is connected to a mounting device for the microscope.
For operations on fine biological structures, in particular for neurosurgical operations on the brain and spinal cord, but also in the ENT field, operating microscopes are used which are arranged on easily movable stands near the operating site.
Depending on the type of operation, operating microscopes and stands of different size and design are used. In neurosurgery, systems have proven particularly useful in which the stand has weights which, in the manner of a balance, compensate the weight of the operating microscope. However, since the microscope has to be moved in the three spatial directions, the stand must have at least three axes of movement. While one axis can be arranged vertically and for this reason no weight compensation has to take place around this axis, it is necessary to effect the balance about two axes by changing the weights or moving the weights.
A great many examples of such stands can be found in the patent literature. In particular, U.S. Pat. No. 5,528,417 describes a system in which the microscope weight is compensated by a counterweight which is moved along a curve depending on the weight of the microscope. In this system, the holder for the microscope is additionally held horizontally by connecting bars, so that the microscope is always suspended vertically under the holder.
Depending on the operation, different additional parts are needed on the operating microscope, and these alter the weight of the operating microscope. For this reason, the system has to be balanced again after the microscope has been re-equipped.
However, regularly required weight compensation has disadvantages. For compensating the shift in weight, the range of compensation is limited and has to be widened by arranging additional weights on the stand, if necessary. In the case of automatic balancing, a high level of electromechanical expenditure is necessary, which considerably increases the costs of a system. If it is forgotten to carry out the balancing procedure, the result is inconvenience for the surgeon or even a danger to the patient through uncontrolled movements of the microscope.
For these reasons, the microscopes are equipped with all possible accessory parts, even if these are not required for an operation. In this way it is possible to dispense with a balancing procedure before the operation and thus avoid the associated risk of imbalance. The disadvantage, however, is that the microscope is made large and unwieldy by the many accessory parts and greatly obstructs the view of the operating site.
The invention starts out from a microscope system of the type mentioned in the introduction (U.S. Pat. No. 5,528,417). The object of the invention is to make available a microscope system in which accessory parts can be arranged on and removed from the microscope without the need for renewed balancing.
SUMMARY OF THE INVENTION
The solution according to the invention lies in the fact that the first further bar also has a receiving device connected to it for accessory parts of the microscope and/or additional weights.
The invention makes use of the knowledge that in this microscope system the balancing does not change if the weight acting on the parallelogram linkage does not change. This weight does not change, however, if parts of the microscope, which is connected to the first further bar of the parallelogram linkage, are removed and are arranged in or on the receiving device for the accessory parts, which is likewise connected to the first further bar of the parallelogram linkage. The fact that the distance of these objects from other parts of the stand or any of the hinges of the parallelogram linkage changes, which change would cause different rotational moments, surprisingly is not important here. This is due to the fact that, even upon swiveling of the parallelogram linkage, the orientation of the first further bar of the parallelogram linkage and of the microscope and accessory parts arranged thereon does not change.
Accessory parts which are not required at a given time do not therefore impede the work with the microscope because they can be removed from the microscope and can be arranged in or on the receiving device for accessory parts, where they no longer obstruct the work with the microscope. The corresponding parts do not have to be carried through the operating theatre and in particular taken to other rooms, which would entail the risk of these parts being damaged, mislaid or contaminated. A new balancing procedure after exchange of an accessory part is not necessary. Instead, the balancing procedure can be carried out once for a defined microscope and for a defined set of accessory parts. No automatic balancing devices of any kind are required any longer. In this way, the stand as a whole can be made lighter, smaller and less expensive.
In some circumstances, the accessory parts for the microscope take up a relatively large amount of space, so that it can be difficult to accommodate them at the end of the parallelogram linkage in the receiving device. In this case, a receiving device for accessory parts of the microscope and for additional weights can be provided on the base part. For each accessory part in this case, an equally heavy additional weight is provided which, if it is made of solid metal for example, obviously takes up a much smaller volume than the accessory part. If the relatively large-volume accessory part is not needed, it can be accommodated in the receiving device on the base part, where there is sufficient space. In its place, the substantially smaller additional weight is then arranged in the receiving device at the outer end of the parallelogram linkage near the microscope.
The invention can be used on all stands in which the microscope is arranged on a substantially horizontal parallelogram linkage. “Substantially horizontal” is intended to signify only that the stand part in question is not a substantially vertical stand part, which is more or less vertical above a foot part, for example, but instead an arm which extends to the side of the foot part or base part and at whose end the microscope is arranged. The parallelogram arm could for example be arranged on a vertical column or on a horizontal double-hinge arm which permits coverage of the XY horizontal surface.
A particularly advantageous microscope system in which the parallelogram linkage forms a first parallelogram linkage is characterized in that the stand also has:
a second substantially vertical parallelogram linkage with two substantially vertical bars and two substantially horizontal bars, of which one of the substantially vertical bars is mounted on the base part so as to be able to pivot about a pivot axle,
a third substantially vertical parallelogram linkage whose first lower hinge on the pivot axle of one of the substantially vertical bars of the second parallelogram linkage is connected to the base part, and whose second lower hinge is likewise connected to the base part and is connected via its upper bar to the first parallelogram linkage,
where a substantially horizontal bar of the first parallelogram linkage is a continuation of the upper substantially horizontal bar of the second parallelogram linkage,
where the second lower hinge of the third parallelogram linkage is arranged higher than the first, the connection line between first and second hinge forms with the horizontal an angle of approximately 30° to 60°, and the upper bar of the third parallelogram linkage forms the second further bar of the first parallelogram linkage.
In the already known microscope system, the first parallelogram linkage and the third parallelogram linkage are connecte

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microsurgical microscope system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microsurgical microscope system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microsurgical microscope system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3277549

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.