Microscope stand having X-Y-Z adjustment unit

Supports – Stand and bracket – Having adjustable bracket

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C206S316100, C248S278100

Reexamination Certificate

active

06592086

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority of the German patent application 101 33 018.9.
FIELD OF THE INVENTION
The invention concerns a microscope stand used, for example, in connection with surgical microscopes.
BACKGROUND OF THE INVENTION
Many conventional stands—e.g. those for surgical microscopes for ophthalmology—carry at their free end, between the microscope and the vertical stand support, an X-Y displacement unit for the microscope. This displacement unit serves to position the microscope to within millimeters in the X-Y direction. This kind of arrangement of the X-Y displacement unit is usually troublesome to an operator, since a large mass and a large volume must be moved. It also makes it difficult to meet the necessary sterility requirements. The X-Y displacement unit furthermore considerably increases the weight on the extension arm, and usually must be compensated for using an appropriate counterweight, or supported with an appropriately large stand foot. As a consequence, the entire carrier arm structure of the stand support, and optionally also the entire stand foot structure, must therefore be of larger dimensions or cover a greater area.
The object of a patent application of Leica Microsystems AG (WO-A-00/08508) was therefore to discover a stand configuration in which the X-Y adjustment function is retained but any considerable weight increase in the carrier arm structure, and the further disadvantages resulting therefrom, are avoided.
The manner in which this earlier object was achieved was not intended necessarily to be limited to a linear adjustment in two stages occurring one after another, or in general to a linear displacement. It also encompassed any desired motions, e.g. calculated or controlled curves, rotary, or pivoting motions in a horizontal plane, and optionally also Z (vertical) adjustments.
The earlier object was achieved, in accordance with the invention, by relocating the X-Y displacement unit at least closer to the vertical stand column, so that the X-Y positioning unit moves not only the microscope but also at least a portion of the horizontal stand support.
In the WO-A application, the X-Y displacement unit was not necessarily limited to slide-like displacement tracks. It could also, for example, comprise at least two motor-driven joints of the horizontal stand support whose mutually coordinated pivoting motions allow an arbitrary change in the position of the microscope in an X-Y plane.
These were features that have proven successful in surgical microscopes in ophthalmology, where (as already mentioned above) what is important is the greatest possible precision in X-Y positioning of the microscope especially during an operation, the consideration here being known surgical techniques used in ophthalmology. In a preferred embodiment, these were implemented using a planar motorized X-Y adjustment system that is not placed directly above the microscope. In the assemblage according to the WO-A application, the microscope itself was not located on a pivot support, and its position therefore was modified practically only by way of the X-Y adjustment system or by pivoting the stand carrier arm.
In ear, nose and throat medicine (ENT) or neurology, on the other hand, what is required is not so much maximum accuracy in the X-Y adjustment, but rather smooth operation (with one hand, if possible) of the microscope on, for example, a pivot support. In this respect, knowledge from microscopy as applied in ophthalmology offers no assistance for stands in the ENT field.
The Applicant has succeeded in specifically serving this market with a surgical microscope (M400-E) that is equipped with a manual X-Y-Z adjustment system and a pivot support. With these it is possible to bring the microscope, by itself or with its various adapters and/or accessories, into a balanced-out position in which the requisite smooth one-hand operation is then guaranteed.
A microscope is balanced when the microscope body is at the center of gravity of the supporting structure. In such a state, the microscope body is easily moveable by hand.
SUMMARY OF THE INVENTION
Proceeding from existing art, the question arises as to whether the position adjustment systems of the ophthalmological microscope and the balancing adjustment systems of the ENT microscope can be improved and speeded up, and whether the laborious (manual) balancing-out of the microscope could be simplified and made more efficient.
The present invention is directed to the manner of achieving the aforesaid object. The present invention makes it possible to reduce the weight and volume on the load arm of the stand, and in that way to improve the stand structure and make it smaller. Any compensation devices that may be present, and optionally also the stand foot, are made lighter and reduced in size.
This object was thus achieved according to the present invention by using the manual X-Y adjustment system, intended for balancing, in such a way that it retains its previous balancing function but additionally has a new and “alien” task imposed upon it. This new task is the positioning of the microscope body in three dimensions and above the specimen to be examined. According to the present invention, the manual balancing adjustment system of the M400-E is now designed as a motorized position adjustment system. This was done by designing the manual X-Y-Z carriage displacement system built into the M400-E as a motor-activated planar X-Y adjustment system and motor-driven Z adjustment system (focusing system).
The result was to create a surgical microscope which can be moved smoothly and with one hand in a balanced-out state, but at the same time can also be adjusted exactly and quickly in motorized fashion, and retained in (possibly unbalanced) position by the mechanical resistance of the motors.
Also part of the invention is the fact that in a particular embodiment, the Z axis is also integrated in the form of a motor-driven focusing system.
The advantages of the innovation according to the present invention include the aforementioned increased speed and efficiency, but also a very compact design, since a separate X-Y coupling is rendered obsolete. The reason is that depending on the configuration and placement of the X-Y adjustment system, in some circumstances all that remains on the microscope body is the motorized focusing system. According to the present invention, the remaining parts are integrated into the mount (support), but in any case in the vicinity of the microscope body.
Numerous embodiments and arrangements of the X, Y, and Z control systems are conceivable. According to a preferred embodiment of the invention, the adjustment capability along the Y and Z axes is arranged directly on the microscope body, and the X adjustment system is located on the pivot support above the microscope.
According to a further improvement, a computer (not depicted in further detail) in conjunction with suitable sensor elements serves to sense the current position of the microscope with reference to the specimen or to a patient, and to convert the respective X-Y-Z command values in such a way that the adjustment motion that is executed is performed, for example, in the X-Y-Z coordinate system of the specimen or patient, or in the coordinate system of the microscope, regardless of the microscope's pivot position in space; or in order to ascertain and (if necessary) correct the balance situation.
According to a further embodiment of the invention, the adjustment devices can also be incorporated into a ceiling mount. The range of protection would thus also extend thereto; the term “column” or “stand” would then be understood as to include a suspended support, and “foot” would be understood as any stand base on the floor, wall, or ceiling.
According to a further embodiment, the adjustment units can be configured so they can be decoupled, so that manual operation is possible.
A further preferred embodiment provides for electric motors with integrated incremental transducers to be used. This allows r

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microscope stand having X-Y-Z adjustment unit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microscope stand having X-Y-Z adjustment unit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microscope stand having X-Y-Z adjustment unit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3050525

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.