Microscope, in particular a stereomicroscope, and a method...

Image analysis – Image enhancement or restoration – Focus measuring or adjusting

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S131000, C382S154000, C382S275000, C348S046000, C348S079000, C345S424000, C345S633000, C606S130000

Reexamination Certificate

active

06483948

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention involves an image representing device, in particular a microscope, in particular a stereomicroscope, for example an operation microscope, in particular a video stereomicroscope that is linked with an electronic data processing unit and/or a display and a method of superimposing an image from a second image representing device such that the two images conform geometrically.
Such microscopes are used in technology, among other things, e. g. materials technology, material analysis, silicon technology, criminology, etc., in particular, however, also in medicine for diagnosis, serological examinations, in operations, etc.
Detailed examples will be given below of the use of the device in the sphere of operation microscopy. The use in other spheres, however, likewise falls within the sphere of application of the invention.
Operation microscopes are used by the operating surgeon for the optical magnification of the operating area. Operation technology in this regard has made such great progress that magnifications in the range of 50 times and more are no rarity. A magnification sometimes leads to a situation in which the operating surgeon cannot always unambiguously identify the area that he is viewing through the microscope with an actual place on the patient. A helpful superimposition of the image seen microscopically with intensified contours, for example, or other markings is therefore often desirable. For the fulfillment of this desire essentially two processes are known in the prior art:
Edge improvements, image coloring, contrast improvements, etc. are effected by means of electronic image processing. The image data required for this are obtained directly from the image being viewed itself and simply transformed mathematically. If such data are superimposed on the observed image data, no significant problem arises in the process, since these image data are returned to the same image location from which they were obtained.
In other designs beam splitters to which displays are allocated through which the images in the light path can be reflected are linked with the microscope light path, and these images are superimposed on the images actually seen in the eye of the viewer. Such images, e. g. images of the same place but taken at an earlier time, are often difficult to superimpose on the image that is seen, since they may be taken with different magnifications, other microscope settings, etc.
A special sphere for the superimposition of images arises, for example, in the use of computer tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) in connection with stereo microscopy. Data from CT and MRI are obtained in order to have a sectional image of the area of interest, which in the final analysis after computer processing makes it possible to display a three-dimensional model that is true to life on a computer monitor (stereo screen). In this regard see Chapter 1 (“Interventional Video Tomography (IVT)”), pages 1-25, Chapter 2 (“Digital Substraction Angiography (DSA)”), pages 27-34, and Chapter 3 (“Technical Specification”), pages 35-41, written by M. Truppe in the company journal of ARTMA BIOMEDICAL, INC. (Apr. 7, 1994).
U.S. Pat. No. 4,722,056 and CH-A-684291 describe devices that theoretically make superimposition possible. A computer-assisted operation microscope, which was put on the market under the designation MKM, can mark both risk zones and tissue structures and also superimpose three-dimensional diagnostic data that are obtained before the stereoscopic viewing on the image seen in the microscope in order to make forward-looking operating possible. An exact superimposition, so that outline contours from the CT, for example, coincide with the stereoscopically viewed outline contours, however, is not possible with this.
Through three-dimensional images it is possible for the attending physicians to localize the kind and extent of the diseased area better and plan appropriate operation steps better in advance. The three-dimensional image data provided by the computer are now in accordance with the invention supposed to be accessible to an operating surgeon in an improved manner immediately before an operation too, specifically in such a way that these image data are exactly superimposed on the image seen in the operation microscope at the same time and in the right position; this may be also in a masking mode or a transparent mode, which makes it possible for the operating surgeon to see as it were under the surface of the place actually being seen and in this way to make possible improved planning and guidance of the operating instrument. This should result in a higher precision of positioning and shorter operation time than is possible today.
In order for this superimposition to take place optimally the optical parameters of the image seen and the parameters of the (three-dimensional) image to be superimposed must be known, since such a superimposition makes sense only if the image seen through the microscope and the superimposed image data conform geometrically. Geometrical correctness is not satisfactory to date for the known superimpositions.
SUMMARY OF THE INVENTION
Overcoming this situation is one of the main objectives of the invention.
The objective is attained, for example, through an adaptive control apparatus according to the present invention;
The first application of an adaptive control apparatus to modify an image to be displayed depending on another displayed image leads to the desired success. In this regard it is first of all immaterial where the actual image superimposition takes place. The following variants are listed as examples:
When one two-dimensional image is displayed exclusively for one of the two eyes of a viewer and another two-dimensional image is displayed for the other viewer eye, the superimposition takes place in the brain of the viewer. It can, however, just as well take place in the computer in order to deliver the superimposed image as an integrated image signal to a monitor or similar device; both signals, however, can also be delivered directly to a monitor or similar device that has, for example, two input channels—if appropriate, for a right and left image channel of a pair of stereo images. Further a purely optical superimposition is conceivable, e. g. in the intermediate image of an optical light path or something similar.
Various qualitatively different measures are provided for the control apparatus in the framework of the invention to detect and correct the image geometry or imaging parameters.
It must always be ensured that the control apparatus detects primary (operational) imaging parameters (eyeline, thus system alignment or viewing angle, perspective, etc., e. g. microscope alignment) and uses them for adapting the image formation geometry of the second image information. This is implemented, for example, through picking up the direction data and settings of the adjustment means of the first device, e. g. from the stand or through monitoring the microscope position through an independent sensing device, such as an ultrasound or infrared position or coordinate determination device (e. g. PIXSYS™) and the device for setting the magnification of the microscope.
An improved adaptation results if the secondary imaging parameters too (e. g. field of vision, magnification, depth of focus) are detected and used for adapting the image formation geometry of the second image information. This is implemented, for example, through picking up the actual z-distance (this is the distance from the object being viewed to the objective bearing surface) from the object viewed and a magnification measurement (gamma measurement) in the light path of the first device.
Obviously it is optimal when the tertiary imaging parameters (e. g. aberration of the metric, distortion depending on the z-distance and gamma measurement in the light path of the first device) are detected and used to correct the image formation geometry of the second image information. Such tertiary ima

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microscope, in particular a stereomicroscope, and a method... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microscope, in particular a stereomicroscope, and a method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microscope, in particular a stereomicroscope, and a method... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2990094

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.