Micropump

Pumps – Electrical or getter type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S050000

Reexamination Certificate

active

06171067

ABSTRACT:

BACKGROUND OF THE INVENTION
The field of microfluidics has gained substantial attention as a potential answer to many of the problems inherent in conventional chemical, biochemical and biological analysis, synthesis and experimentation. In particular, by miniaturizing substantial portions of laboratory experimentation previously performed at a lab bench, one can gain substantial advantages in terms of speed, cost, automatability, and reproducibility of that experimentation. This substantial level of attention has led to a variety of developments aimed at accomplishing that miniaturization, e.g., in fluid and material handling, detection and the like.
U.S. Pat. No. 5,271,724 to van Lintel, for example reports a microscale pump/valve assembly fabricated from silicon using manufacturing techniques typically employed in the electronics and semiconductor industries. The microscale pump includes a miniature flexible diaphragm as one wall of a pump chamber, and having a piezoelectric element mounted upon its exterior surface.
Similarly, U.S. Pat. No. 5,375,979 to Trah, reports a mechanical micropump/valve assembly that is fabricated from three substrate layers. The pump/valve assembly consists of a top cover layer disposed over a middle layer having a cavity fabricated therein, to define the pumping chamber. The bottom layer is mated with the middle layer and together, these substrates define each of two, one way flap valves. The inlet valve consists of a thin flap of the middle substrate layer that is disposed over an inlet port in the bottom substrate layer, and seated against the bottom layer, such that the flap valve will only open inward toward the pump chamber. A similar but opposite construction is used on the outlet valve, where the thin flap is fabricated from the bottom layer, is seated over the outlet port and against the middle layer such that the valve only opens away from the pump chamber. The pump and valves cooperate to ensure that fluid moves in only one direction.
Published PCT Application No. 97/02357 reports an integrated microfluidic device incorporating a microfluidic flow system in combination with an oligonucleotide array. The microfluidic system moves fluid by application of external pressures, e.g., via a pneumatic manifold, or through the use of diaphragm pumps and valves.
While these microfabricated pumps and valves provide one means of transporting fluids within microfabricated substrates, their fabrication methods and materials can be somewhat complex, resulting in excessive volume requirements, as well as resulting in an expensive manufacturing process.
Published PCT Application No. 96/04547 to Ramsey, describes an elegant method of transporting and directing fluids through an interconnected channel structure using controlled electrokinetic forces at the intersections of the channels, to control the flow of material at those intersections. These material transport systems employ electrodes disposed in contact with the various channel structures to apply the controlled electrokinetic forces. These methods have been adapted for a variety of applications, e.g., performing standard assays, screening of test compounds, and separation/sequencing of nucleic acids, and the like. See, e.g., commonly assigned U.S. patent application Ser. No. 08/761,575, filed Dec. 6, 1996, now U.S. Pat. No. 6,046,056, U.S. Patent Application Ser. No. 60/086,240, filed Apr. 4, 1997 U.S. Pat. No. 5,976,336 and U.S. patent application Ser. No. 08/845,754 now U.S. Pat. No. 5,976,336, filed Apr. 25, 1997, all of which are incorporated herein by reference in its entirety for all purposes. These “solid state” material transport systems combine a high degree of controllability with an ease of manufacturing.
Despite the numerous advantages of using controlled electrokinetic material transport in microfluidic systems, in some cases it is desirable to combine the ease of control and fabrication attendant to such systems with the benefits of pressure-based fluid transport systems. The present invention meets these and other needs.
SUMMARY OF THE INVENTION
The present invention provides microfluidic systems that incorporate the ease of fabrication and operation of controlled electrokinetic material transport systems, with the benefits of pressure-based fluid flow in microfluidic systems. The present invention accomplishes this by providing, in a first aspect, a microfluidic device having a body structure with at least one microscale channel disposed therein, and also having an integrated micropump in fluid communication with the microscale channel. The micropump comprises a first microscale channel portion having first and second ends, and a second microscale channel portion having first and second ends. The second channel portion has a first effective surface charge associated with its walls. The first end of the second channel portion is in fluid communication with the first end of the first channel portion at a first channel junction. The pump also includes a means for applying a voltage gradient between the first and second ends of the second channel portion while applying substantially no voltage gradient between the first and second ends of the first channel portion.
The microfluidic devices and micropumps of the present invention may also include a third channel portion that is in communication with the channel junction, and which includes a charge associated with its surface. This charge may be the same as or substantially opposite to that of the second channel portion. This third channel portion also typically includes a means for applying a voltage gradient across its length, which means may be the same as or different from that used to apply a voltage gradient across the length of the second channel portion.
In a related aspect, the present invention also provides a method of transporting fluid in a microfluidic channel structure, which comprises providing a micropump of the present invention. The method also comprises applying an appropriate voltage gradient along the length of the second channel portion to produce an electroosmotically induced pressure within the second channel portion. This is followed by the transmission of that pressure to the first channel portion whereupon pressure-based flow is achieved in that first channel.


REFERENCES:
patent: 3223038 (1965-12-01), Bahnson et al.
patent: 3239130 (1966-03-01), Naundorf, Jr.
patent: 3418206 (1968-12-01), Hall et al.
patent: 3923426 (1975-12-01), Theeuwes
patent: 4675300 (1987-06-01), Zare et al.
patent: 4908112 (1990-03-01), Pace
patent: 5126022 (1992-06-01), Soane et al.
patent: 5256036 (1993-10-01), Cole
patent: 5358612 (1994-10-01), Dasgupta
patent: 5585069 (1996-12-01), Zanzucchi et al.
patent: 5603351 (1997-02-01), Cherukuri et al.
patent: 5646039 (1997-07-01), Northrup et al.
patent: 5660703 (1997-08-01), Dasgupta
patent: 5846396 (1998-12-01), Zanzucchi et al.
patent: 6012902 (2000-01-01), Parce
patent: 945733 (1949-05-01), None
patent: WO 9604547 (1996-02-01), None
patent: WO 9702357 (1997-01-01), None
Dasgupta, P.K. et al., “Electroosmosis: A Reliable Fluid Propulsion System for Flow Injection Analysis,”Anal. Chem.(1994) 66:1792-1798.
Hinckley, J.O.N., “Transphoresis and Isotachophoresis as Preparative Techniques with Reference to Zero-Gravity,” AIAA/ASME 1974 Thermophysics and Heat Transfer Conference, Jul. 15-17, 1974, AIAA Paper No. 74-664, Boston, MA.
Manz, A. et al., “Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems,”J. Micromech. Microeng.(1994) 4:257-265.
Ramsey, J.M. et .al., “Microfabricated chemical measurement systems,”Nature Med.(1995) 1:1093-1096.
Seiler, K. et .al., “Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantitation, and Separation Efficiency,”Anal. Chem.(1993) 65:1481-1488.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Micropump does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Micropump, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Micropump will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2497267

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.