Microprocessor controlled converter having reduced noise interfe

Coded data generation or conversion – Analog to or from digital conversion – Analog to digital conversion

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

3642412, H03M 112

Patent

active

053070666

DESCRIPTION:

BRIEF SUMMARY
INDUSTRIAL FIELD

The present invention relates to a microcomputer with built-in converters, and more particularly relates to a microcomputer which prevents degradation of conversion accuracy due to noises, where the conversion is done on built-in type analog to digital converters (hereinafter referred to as "AD converters"), digital to analog converters (hereinafter referred to as "DA converters"), or a combination of these converters.


BACKGROUND OF THE INVENTION

One typical example of a conventional microcomputer is disclosed in Japanese Laid Open Publication No. 64-58043. Its configuration will be explained hereinafter referring to drawings. FIG. 2 is a block diagram of one example of the conventional microcomputer with built-in converters.
This microcomputer incorporates a central processing unit (hereinafter referred to as "CPU") 1 which is adapted for processing digital signals in response to instructions provided by a given program. An AD converter 2 is connected to this CPU 1 via a data bus DB and an address bus AB. The AD converter 2 converts each analog signal received at an analog input terminal 3 to a corresponding digital signal in accordance with a conversion initiation signal ST from the CPU 1. After the conversion, the AD converter 2, on one hand, passes the digital signal to the CPU 1 via the data bus DB and, on the other hand, generates an AD selection signal S2.
An edge detection circuit 4 is connected to the CPU 1 as well as to the AD converter 2. The edge detection circuit 4 detects the (conversion) state of the AD converter 2 in response to the AD selection signal S2 and provides a CPU stop signal SP or clear signal CLR to the CPU 1.
In the case of a microcomputer of this type, the CPU 1 passes, via the address bus AB, to the AD converter 2 each address which was sequentially given to the AD converter 2 by the given program. Thereupon, the AD converter 2 is selected and an AD selection signal S2 generated by the selected AD converter 2 will become active. In so doing, it shifts from "L" level to a "H" level. The edge detection circuit 4 detects a rise of the AD selection signal S2, i.e. from the "L" level to the "H" level and passes the CPU stop signal SP to the CPU 1 to interrupt of CPU operation.
On receipt of the CPU stop signal SP, the CPU 1 is put in a stop mode and concurrently passes the AD conversion initiation signal ST to the AD converter 2 to initiate its operation. As a result, the AD converter 2 converts an analog signal received at the analog input terminal 3 to a corresponding digital signal. After passage of a prescribed period, the AD selection signal S2 outputted from the AD converter 2 shifts from the "H" level to the "L" level. This shift in level is detected by the edge detection circuit 4 which in turn passes the clear signal CLR to the CPU 1 so that the CPU 1 restarts its operation.
As stated above, the conventional microcomputer is associated with the edge detection circuit 4 which detects the conversion carried out by the AD converter 2 so that, when the AD converter 2 is in operation, the edge detection circuit 4 outputs a CPU stop signal SP to halt major operations of the CPU 1. Consequently, generation of noises by the CPU 1 during the AD conversion process is reduced so as not to interfere with the accuracy of the AD converter 2 during these operations. However, the efficiency of microcomputer using this architecture is severely diminished because once the CPU 1 is put in a halt mode by the AD converter 2 (or alternatively a DA converter), the CPU 1 cannot perform any operations other than the AD conversion (or alternatively DA conversion) thereby causing a serious problem of low operation. When a microcomputer is provided with a halt mode for halting operation of the CPU itself, a similar procedure can be carried out by an appropriate program without use of the edge detection circuit 4.
It is the basic object of the present invention to provide a microcomputer with built-in converters which assures high accuracy in AD or DA conversion without increase

REFERENCES:
patent: 4996639 (1991-02-01), Ishimoto et al.
Burton et al. "Microprocessor Systems Handbook", 1977, pp. 157-161.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microprocessor controlled converter having reduced noise interfe does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microprocessor controlled converter having reduced noise interfe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microprocessor controlled converter having reduced noise interfe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1714391

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.