Microprocessor-based control system for gas turbine electric...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Electrical power generation or distribution system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S289000, C700S290000, C477S030000, C477S031000, C477S121000, C060S239000, C060S226100, C060S237000, C361S051000

Reexamination Certificate

active

06789000

ABSTRACT:

BACKGROUND AND SUMMARY OF THE INVENTION
The present invention relates to a microprocessor-based control system for operating a gas turbine electric powerplant. The gas turbine electric powerplant uses a turbine engine, such as an aircraft engine, to operate an electric generator that produces electric power. The microprocessor-based control system provides for the proper start-up, operation, and shut-down of the gas turbine electric powerplant, as well as for monitoring and turbine overspeed control. The microprocessor-based control system allows the gas turbine electric powerplant to be operated safely, even in an unattended condition.
There are numerous situations wherein it may be desirable to use a gas turbine electric powerplant of the present invention. For example, it may be necessary to provide electric power to a remote area that is not supplied by a utility company. Electric power consuming operations that are commonly conducted in remote areas include, for example, drilling for oil and natural gas. Such operations may require more power than can be supplied by typical gas or diesel generators. When such an operation is too remote to receive power from a utility, the gas turbine electric powerplant of the present invention may be used to supply electric power to the operation. Similarly, the gas turbine electric powerplant of the present invention can be used when electric power production is required on only a temporary basis. For example, in the above-described remote drilling operation, utility power may be available, but connection costs may be prohibitive based on the short period of time during which electric power will be required. Such a situation may also occur during large-scale, remote construction projects.
The gas turbine electric powerplant of the present invention may also be used to provide backup power during interruption of electric power supplied from a utility or other source. The gas turbine electric powerplant of the present invention may be brought online in as little as 30-60 seconds, thereby preventing long periods of down time. Use of the gas turbine electric powerplant for backup power may be highly effective for commercial buildings, manufacturing facilities, hospitals, or other locations wherein a long term interruption of electric power is particularly problematic.
One or more of the gas turbine electric powerplants of the present invention may also be used in a variety of other ways by a producer of electric power. For example, an electric utility may utilize one or more of the gas turbine electric powerplants to provide load-leveling or peak shaving during periods of high demand for electric power. Utilities commonly struggle with the problem of meeting peak demand, which occurs typically at particular times of the day, and is usually more severe during certain times of the year. Peak demand is the result of consumers using more electricity at particular times of the day than at others; for example, during the waking hours as opposed to during the nighttime hours. To meet peak demand, a utility's power generating plants must typically be overdesigned—meaning that they only run near peak efficiency during periods of high demand. Therefore, for the majority of a given day, the power plant runs at a reduced output and, unfortunately, a lower efficiency. By employing the gas turbine electric powerplant of the present invention, utility power generating plants could be designed to meet only average demand while running at optimum efficiency. One or more of the gas turbine electric powerplants of the present invention could then be tied to the utility's power distribution and transmission grid, and when peak demands arise, the gas turbine electric powerplants can be operated to inject additional electric power into the grid. The control system of the gas turbine electric powerplant of the present invention can provide for automatic start-up and operation when high demand is detected. When the demand ebbs, the gas turbine electric powerplants can be shut down as needed. The portability of the gas turbine electric powerplant of the present invention also allows additional units to be set up at a utility if needed to meet increasing peak demand. Such a situation may occur when a particular area, or areas, served by a utility grows at a faster than expected rate. In this manner, both the cost of building a power generating plant and the cost of producing electricity may be reduced, while still ensuring that peak demand can be met.
The gas turbine electric powerplant of the present invention can also be used as a source of co-generation electric power. For example, the gas turbine electric powerplant may be installed at an industrial facility and tied into the facility's electric power transmission and distribution system in order to augment the electric power supplied by an electric utility company. The cost to purchase electric power from a utility may vary throughout a given day or week. For example, it is common for large industrial facilities to be limited in the amount of power they may use, or to otherwise be charged a significantly elevated price during periods of high demand. Such may occur, for example, during periods of extreme weather, when the general consumption of electric power typically increases. When such a situation exists, the industrial facility may operate one or more of the gas turbine electric powerplants to supplement the electric power it receives from the utility. In this manner, the industrial facility can avoid having to either reduce its power consumption or pay a higher cost for electric power during such periods.
The gas turbine electric powerplant of the present invention can also be used as a source of distributed power generation. As certain populated areas grow, the demand for electric power generally increases. Many times, the provider of electric power does not have the capacity to meet the increased demand. Electric utilities often form cooperatives, or otherwise enter into agreements wherein electric power may be sold and delivered between the utilities. Thus, if one utility cannot meet demand, and a second utility has excess capacity, the second utility may sell blocks of power to the first utility. The first utility may be at a disadvantage, because the cost to purchase and transfer the electric power to the area of demand may be high. The second utility is able to take advantage of its excess capacity by selling and distributing the electricity to other providers. The gas turbine electric powerplant of the present invention can be used to take advantage of growing markets, by allowing a provider to produce additional electric power that may be sold to other providers without sufficient capacity. Alternatively, the gas turbine electric powerplant of the present invention may be used by a provider to obviate the need for purchasing additional electric power from another utility. Rather, the provider may use the gas turbine electric powerplant to produce incremental electric power in small blocks, minimizing large incremental power block purchases from other utilities. The gas turbine electric powerplant can be located to provide electric power wherever it is needed. For example, the gas turbine electric powerplant may be placed at a distribution substation and tied into a utility's transmission and distribution lines.
The gas turbine electric powerplant of the present invention uses a gas turbine engine to run an electric generator. Preferably, the gas turbine electric powerplant uses an aeroderivative gas turbine engine, such as is designed for a helicopter. The turbine engine may be purchased new, or may be removed from an aircraft and retrofitted for use in the gas turbine electric powerplant. Although a variety of turbine engines may be employed, preferably the turbine engine is a turboshaft engine.
A gearbox is preferably used to reduce the output speed of the turbine engine to a predetermined value. While the turbine engine may have an internal gear reduction, an external gearbo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microprocessor-based control system for gas turbine electric... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microprocessor-based control system for gas turbine electric..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microprocessor-based control system for gas turbine electric... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3185196

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.