Microprobe

Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

324760, 324761, 250306, 251 11, G01R 3102

Patent

active

054753180

ABSTRACT:
A microprobe comprises a base, a microcantilever extending in a plane from the base, and a probe tip projecting from the microcantilever out of the plane. The microcantilever is a bimorph structure comprising first and second layers made from materials having different coefficients of thermal expansion, and an integrated heated element for supplying heat to the microcantilever. The probe tip is made from silicon and comes to a radius that can be controlled to atomic sharpness (<1 nm) if desired. Alternatively, the probe tip is a planar structure. Desirably, the microcantilever is made from a metal, such as aluminum, and silicon oxide as the materials of the two layers. The heating element comprises a line or ribbon of a conductive material, such as polysilicon which is in contact with one of the two layers, and supplies heat, thereby causing the probe tip to traverse an arc and bring it into contact with a material under investigation.

REFERENCES:
patent: 4749942 (1988-06-01), Sang
patent: 5069419 (1991-12-01), Jerman
patent: 5201992 (1993-04-01), Marcus et al.
patent: 5268571 (1993-12-01), Yamamoto
Abrecht, T. R., Shinya Akamine, Mark J. Zdeblich and Calvin F. Quate, Microfabrication of Integrated Scanning Tunneling Microscope, J. Vac. Sci. Technol. A8(1), Jan./Feb. 1990.
R. B. Marcus, T. S. Ravi and T. Gmitter, K. Chin, D. Liu, W. J. Orvis and D. R. Ciarlo, C. E. Hunt and J. Trujillo, 1990, Formation of Silicon Tips with <1 nm radius, Appl. Phys. Lett. 56(3), Jan. 1990.
R. B. Marcus, T. S. Ravi, T. Gmitter, H. H. Busta, J. T. Niccum, K. K. Chin and D. Liu, Atomically Sharp Silicon and Metal Field Emitters, 1991, IEEE Transactions on Electron Devices, vol. 38, No. 10, Oct. 1991.
R. A. Buser and N. F. de Rooij, H. Tischhauser, A. Dommann and G. Staufert Biaxial Scanning Mirror Activated by Bimorph Structures for Medical Applications Sensors and Actuators A, 31 (1992) 29-34, pp. 29-34.
S. R. Weinzieri, J. M. Heddleson, R. J. Hillard, P. Rai-Choudhury, R. G. Mazur, C. M. Osburn, Paul Potyraj, Ultrashallow Dopant Profiling Via Spreading Resistance Measurements with Integrated Modeling, Jan. 1993, Solid State Technology, pp. 31-38.
R. G. Mazur, G. A. Gruber, Dopant Profiles on Thin Layer Silicon Structures with the Spreading Resistance Technique, Solid State Technology, Copyright Nov. 1981.
J. Brugger, R. A. Buser and N. F. de Rooij, Silicon Cantilevers and Tips for Scanning Force Microscopy, Sensors and Actuators A, 34 (1992) 193-200.
T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, Microfabrication of Cantilever Styli for the Atomic Force Microscope, J. Vac. Sci. Technol. A8(4), Jul./Aug. 1990, pp. 3386-3396.
W. Benecke and W. Riethmuller, Applications of Silicon-Microactuators Based on Bimorph Structures, THO249-3/89/0000/0025$1.00 1989 IEEE, pp. 116-120.
Mark Beiley, Faith Ischishita, Cuong Nguyen, and Simon Wong, Array Probe Card, May 1992, $3.00 1992 IEEE, pp. 28-31.
Cantilevers with Ultra-Sharp Tips for Scanning Force Microscopy Park Scientific Instruments Brochure (undated).
Dr. Olaf Wolter, Nanoprobe Brochure (undated).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Microprobe does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Microprobe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microprobe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1362459

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.