Electricity: power supply or regulation systems – Output level responsive – Using a three or more terminal semiconductive device as the...
Patent
1996-04-03
1998-10-20
Nguyen, Matthew V.
Electricity: power supply or regulation systems
Output level responsive
Using a three or more terminal semiconductive device as the...
323222, G05F 156
Patent
active
058251650
ABSTRACT:
A micropower switching regulator for use in a hysteretic current-mode switching mode power converter monitors a fraction of the voltage output to the load in order to maintain the output voltage at a desired level. When the output voltage is less than the desired level, a proportional current is generated, representative of the difference between the output voltage and the desired level, and used to control the switching regulator causing an inductor to alternate between charging to a hysteretic maximum current level and then discharging to a hysteretic minimum current level, controlled by the switching regulator, until the output voltage is greater than the desired level. The hysteretic maximum and minimum current levels vary as the proportional current varies, so that as the difference between the output voltage and the desired voltage increases or decreases, the current level in the inductor will also increase or decrease, responsively. The inductor is charged and discharged continuously during a continuous conduction mode. During a discontinuous conduction or idle mode, the switching regulator is only turned on when necessary to maintain the output voltage at a level equal to or greater than the desired voltage level. Power is only drawn by the switching regulator, from the input source, when the proportional current is generated, because there is a difference between the output voltage and the desired voltage. In this manner the power provided by the input source is conserved and the desired output voltage level is maintained efficiently.
REFERENCES:
patent: 3294981 (1966-12-01), Bose
patent: 3603809 (1971-09-01), Uchiyama
patent: 3660753 (1972-05-01), Judd et al.
patent: 3883756 (1975-05-01), Dragon
patent: 4311954 (1982-01-01), Capel
patent: 4392103 (1983-07-01), O'Sullivan
patent: 4407588 (1983-10-01), Arichi et al.
patent: 4437146 (1984-03-01), Carpenter
patent: 4456872 (1984-06-01), Froeschle
patent: 4529927 (1985-07-01), O'Sullivan et al.
patent: 4672303 (1987-06-01), Newton
patent: 4672518 (1987-06-01), Murdock
patent: 4677366 (1987-06-01), Wilkinson et al.
patent: 4691159 (1987-09-01), Ahrens et al.
patent: 4731574 (1988-03-01), Melbert
patent: 4736151 (1988-04-01), Dishner
patent: 4761725 (1988-08-01), Henze
patent: 4841220 (1989-06-01), Tabisz et al.
patent: 4845420 (1989-07-01), Oshizawa et al.
patent: 4920309 (1990-04-01), Szepesi
patent: 4929882 (1990-05-01), Szepesi
patent: 4940929 (1990-07-01), Williams
patent: 4941080 (1990-07-01), Sieborger
patent: 4947309 (1990-08-01), Jonsson
patent: 4975823 (1990-12-01), Rilly et al.
patent: 5028861 (1991-07-01), Pace et al.
patent: 5034873 (1991-07-01), Feldtkeller
patent: 5138249 (1992-08-01), Capel
patent: 5146399 (1992-09-01), Gucyski
patent: 5278490 (1994-01-01), Smedley
patent: 5359281 (1994-10-01), Barrow et al.
patent: 5412308 (1995-05-01), Brown
patent: 5414341 (1995-05-01), Brown
patent: 5434767 (1995-07-01), Batarseh et al.
patent: 5440473 (1995-08-01), Ishii et al.
patent: 5450000 (1995-09-01), Olsen
patent: 5457621 (1995-10-01), Munday et al.
patent: 5457622 (1995-10-01), Arakawa
patent: 5461302 (1995-10-01), Garcia et al.
patent: 5479089 (1995-12-01), Lee
patent: 5481178 (1996-01-01), Wilcox et al.
patent: 5485361 (1996-01-01), Sokal
patent: 5491445 (1996-02-01), Moller et al.
patent: 5502370 (1996-03-01), Hall et al.
patent: 5532577 (1996-07-01), Doluca
patent: 5552695 (1996-09-01), Schwartz
patent: 5565761 (1996-10-01), Hwang
patent: 5568041 (1996-10-01), Hesterman
patent: 5592071 (1997-01-01), Brown
patent: 5592128 (1997-01-01), Hwang
patent: 5610502 (1997-03-01), Tallant, II et al.
patent: 5617306 (1997-04-01), Lai et al.
patent: 5627460 (1997-05-01), Bazinet et al.
U.S. application No. 08/530,081, Mader et al., filed Sep. 19, 1995.
U.S. application No. 08/413,249, Hwang, filed Mar. 30, 1995.
"ML4863 High Efficiency Flyback Controller", Micro Linear Corporation, Feb. 1995.
"ML4863EVAL User's Guide High Efficiency Flyback Controller", Micro Linear Corporation, Feb. 1995.
"Off-Line and One-Cell IC Converters Up Efficiency", Frank Goodenough, Electronic Design, pp. 55-56, 58, 60, 62-64, Jun. 27, 1994.
"Designing with hysteretic current-mode control", Gedaly Levin and Kieran O'Malley, Cherry Semi-Conductor Corp., EDN, pp. 95-96, 98, 100-102, Apr. 28, 1994.
"Analysis of the Flyback Converter Operating in Current-Mode Pulse-Frequency Modulation", Urs Mader and Kit Sum, High Frequency Power Conversion, Apr. 17, 1994.
"Step-Up/Step-Down Converters Power Small Portable Systems", Bruce D. Moore, EDN, pp. 79-84, Feb. 3, 1994.
"ML4861 Low Voltage Boost Regulator", Micro Linear Corporation, Jun. 1993.
"11. Variable Frequency Converters", K. Kit. Sum, pp. 96-97, 134-135, 1993.
"3.3V/5V/Adjustable Output, Step-Up, DC-DC Converters", Maxim Integrated Products, pp. 1-8, 1993.
"Small-Signal High-Frequency Analysis Of The Free-Running Current-Mode-Controlled Converter", Richard Redl, pp. 897-906, IEEE, 1991.
"Low-Voltage-Input, 3V/3.3V/5V/Adjustable-Output, Step-Up DC-DC Converters", Maxim Integrated Products, pp. 4-189 to 4-191 (no date).
"LT1073 Micropower DC-DC Converter Adjustable and Fixed 5V, 12V", Linear Technology, pp. 4-174 to 4-189, 4-192, (no date).
"System-Engineered Portable Power Supplies Marry Improved Efficiency And Lower Cost", Bruce D. Moore, Maxim Integrated Products (no date).
"Nonlinear-Carrier Control for High Power Factor Rectifiers Based On Flyback, Cuk, or Sepic Converters," R. Zane and D. Maksimovic, Applied Power Electronics Conf., pp. 814-820, 1996.
"Nonlinear-Carrier Control for High Power Factor Boost Rectifiers," D. Maksimovic, Y. Jang, R. Erikson, Applied Power Electronics Conf., pp. 635-641, 1995.
"ML4821 Power Factor Controller," Micro Linear Corporation, Jun. 1992.
"Application Note 16--Theory and Application of the ML4821 Average Current Mode PFC Controller," Micro Linear Corporation, Jan. 1992.
"ML4823 High Frequency Power Supply Controller," Micro Linear Corporation, Dec. 1994.
"CD 54/74 HC 4046A Technical Data," RCA, (no date).
"ML4863 High Efficiency Battery Pack Converter (Preliminary)", Micro Linear Corporation, Jun. 1994.
"ML4880 Portable PC/PCMCIA Power Controller (Preliminary)", Micro Linear Corporation, Oct. 1995.
Kitching Christopher
Wymelenberg Joseph Vanden
Micro Linear Corporation
Nguyen Matthew V.
LandOfFree
Micropower switch controller for use in a hysteretic current-mod does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Micropower switch controller for use in a hysteretic current-mod, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Micropower switch controller for use in a hysteretic current-mod will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-248128