Micropower capacitance-based proximity sensor

Electricity: measuring and testing – Impedance – admittance or other quantities representative of... – Lumped type parameters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06307384

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
Many modern electronic devices use batteries to provide power. The use of batteries is advantageous because it allows the device to be used virtually anywhere. People have become accustomed to using devices which use rechargeable or easily disposable batteries. These devices include digital cameras, video recorders, lap top computers and cellular phones. For many of these devices, power consumption is generally not a problem. The device is simply turned on when needed, used, and shut off when finished. Thus, the battery is only drained when the device is actually being used.
For some devices, the operator may wish to use the device for an extended period of time, but only on an intermittent basis. For instance, when traveling in darkness in an outdoor environment, a person might use a night vision monocular scope to clearly view selected objects. During actual movement, however, the person may find it awkward to constantly look through the device. To use the device most efficiently, the person may cease movement, raise the device to their eye, look through it, and subsequently return it to a carrying position. Then the person would continue moving. While this may be an efficient way of using the device, it is not an efficient way of using the power supply because, the device is constantly using power, even while in the carrying position.
One simple solution would be to simply turn the device on and off. However, this can be clumsy and awkward, thus slowing the person down and detracting them from other tasks. Furthermore, many battery powered devices have relatively long power up and power down periods. More sophisticated devices might even have software applications which must be booted. All this renders it impractical to consistently be turning such devices manually on and off.
To solve this problem, some devices have incorporated a switch near the eye piece. When the operator looks through the device, their head contacts the eye piece thus causing the switch to turn the power on. In devices with long power-up times, the eye piece does not turn the device entirely on and off, but rather switches it from a low to high power state.
While providing a relatively simple and economical solution to the problem, the use of such a switch has many drawbacks. In order to be comfortably used, the switch must be relatively easy to engage. As such, many types of unintended contact will turn the device on and off. For instance, when carrying the monocular night vision scope in their hand, a person may bump the eye piece against their leg or other portion of their body thus inadvertently turning the device on. If such inadvertent contacts are frequent, there will not be any savings in power consumption from the incorporation of such a switch. An additional problem exists for users of such devices who wear eye glasses. The eye piece of the device must be pressed firmly up against the glasses, thus causing the glasses to press into the operator's head, which may cause pain or discomfort.
Another power reduction device is the use of an infrared sensor incorporated near the electronic device. The eye detector may detect heat from a person in close proximity or actually emit infrared beams and detect their reflection to determine when the device should be powered up. Simply detecting heat from a person is not always efficient because heat is generated by every portion of the body. Once again, causing the device to be powered up when it is not actually intended to be used, thus wasting power. Emitting infrared beams to detect the reflection causes two separate problems. First the emitter-detector uses a relatively high amount of power itself, thus negating many of the benefits intended to be derived. Second, such projected infrared beams can be detected by many extraneous sources, which is of particular concern when these devices are used in military operations.
With both the heat sensor and the emitter/detector combination, a problem exists for people who wear eye glasses as the lenses of the glasses may deflect infrared radiation thus preventing the detector from noting their presence and turning the device on.
Some electronic devices may use a complicated eye-imaging detector. Such a detector also suffers in that it uses a relatively large amount of power. In addition, the optics required to perform such imaging often increase the size of the device beyond what is commercially desired. Therefore, there exists a need to provide a simple and efficient proximity detector which brings the device from a low power usage state to a high power usage state.
SUMMARY OF THE INVENTION
The present device uses capacitive plates located near the eyepiece of an electronic device. The capacitive plates are connected to relatively simple circuitry which uses a minimal amount of power. Three capacitive plates forming two capacitors are placed near the eyepiece. The two capacitors share the middle plate. The capacitive plates are aligned with respect to the eyepiece in such a way that when the operator looks at the eyepiece, their nose and cheek will cover one, but only one, of the capacitors. When the electronic device is in a stand-by or powered down mode, with no object in front of either capacitor, the output of both capacitors will be identical. When raised to eye level and one of the capacitors is covered by the operator's face, the electric field surrounding the covered capacitor changes. Thus, that capacitor will have a different output than the uncovered one. This differential in capacitance is registered by the circuitry and the device is powered up. When the device is in stand-by mode and the operator inadvertently covers both capacitors, for example, by resting the device against his leg, the device will not unintentionally be powered up. This is because if both capacitors are covered by the same object, the capacitance of both capacitors will be identical and hence there will be no differential.
It is an object of the present invention to provide a proximity detector for an electronic device which conserves power.
It is another object of the present invention to provide a proximity detector which, when activated brings an electronic device from a low-or no-power status to a powered on status.
It is a further object of the present invention to provide a proximity detector which reliably powers on the electronic device only when the device is actually intended to be used.
It is yet a further object of the present invention to provide a proximity detector which minimizes the occurrence of a false detection.
It is still another object of the present invention to provide a proximity detector that uses very little power.
It is still yet another object of the present invention to provide a proximity detector which is not affected by the use of eyeglasses.
It is a further object of the present invention to provide a proximity detector which occupies a relatively small amount of space within an electronic device.


REFERENCES:
patent: Re. 30916 (1982-04-01), McWaters
patent: 4191894 (1980-03-01), Noda et al.
patent: 5200774 (1993-04-01), Nakajima
patent: 5313305 (1994-05-01), Harigaya et al.
patent: 5521638 (1996-05-01), Dezaki et al.
patent: 5526082 (1996-06-01), Hirano
patent: 5564364 (1996-10-01), Kovacs et al.
patent: 5570156 (1996-10-01), Arai et al.
patent: 5570157 (1996-10-01), Konishi
patent: 5570158 (1996-10-01), Wakabayashi et al.
patent: 5600400 (1997-02-01), Wakabayashi et al.
patent: 5606390 (1997-02-01), Arai et al.
patent: 5699115 (1997-12-01), Hiraki et al.
patent: 6025726 (2000-02-01), Gershenfeld et al.
patent: 2243217A (1991-10-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Micropower capacitance-based proximity sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Micropower capacitance-based proximity sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Micropower capacitance-based proximity sensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2560750

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.