Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Method of culturing cells in suspension
Reexamination Certificate
1999-09-03
2001-03-20
Tate, Christopher (Department: 1651)
Chemistry: molecular biology and microbiology
Animal cell, per se ; composition thereof; process of...
Method of culturing cells in suspension
C435S002000, C435S243000, C435S297100, C435S297500, C435S305100, C435S305400, C435S309200, C435S325000, C435S366000, C435S395000, C435S401000
Reexamination Certificate
active
06204056
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present is invention concerns the field of microbiological pathology and is more particularly addressed to a novel microbiological culture method and attendant apparatus that utilizes patient whole blood.
2. Description of Related Art
From the textbook of microbiology, Biology of Microorganisms, by Madigan, Martinko, and Parker, we learn that, “The most important activity of the microbiologist in medicine is to isolate and identify the agents that cause infectious disease.” This is called the pure culture method of current practice, which proceeds by culturing a patient specimen or blood, thereby isolating and identifying pathogens, and using the resulting inoculum to make a pure culture, which may then be tested for sensitivity to antibiotics or other medications.
While much has been learned from this classic method, it has great limitations. The complex interrelationship of all the different microbes in a patient, with all the helpful and harmful elements in that host, are not considered as part of a whole. In research it is useful to study parts, but to treat an individual patient effectively, we must consider the whole person, at the time of inquiry. We must recognize that a human being is a mixed culture, and that pure cultures do not give physicians the information necessary to treat patients. This is vital at a time, as we are now experiencing, when pathogens are becoming resistant to antibiotics as well as more virulent.
This problem has long been recognized in microbiology, but broth cultures and mixed cultures were deemed too complex and too hard to work with. Agar culture media are difficult to use, and blood clots are difficult to deal with, so anticoagulants are routinely employed. Further, since labs are far distant, preservatives and refrigeration are necessary. Thus, artificial conditions, desire for convenience, and reliance upon pure cultures have left us less able to respond effectively to the pestilence of our times.
The process described herein considers the whole person, uses whole blood and specimen-not inoculum-and proceeds directly to the cure, not stopping to identify or isolate pathogens. The process is a basic simplification of microbiology/pathology (micropathology). Devices described herein allow the process to be used conveniently and protect personnel from potentially hazardous patient's blood. Availability of a process that can actually determine if a patient needs an antibiotic, and which one, may change the way antibiotics and other medications are prescribed.
The Problem
People become ill with pathogens, microbes such as bacteria, viruses, protozoa, fungi, yeasts, etc. Curative substances, e.g., chemical agents and antibiotics, penicillin for example, are used to inhibit the growth of, or kill, pathogen(s). Known sensitivity of a given pathogen to a specific antibiotic(s) allows the patient to be treated with that antibiotic, or combination, with a high probability of cure. The physician's dilemma is, how to determine which antibiotic or medication will be effective. But even before considering which antibiotic, the physician must determine if any antibiotic is indicated. Viruses and allergies can mimic bacterial infections but are not helped by antibiotics, which may actually worsen the condition. In addition, the unnecessary prescribing of antibiotics is part of the cause of pathogens developing resistance.
Currently, a patient with typical symptoms is treated with the antibiotic that has been effective in the past. However, many pathogens have become resistant to antibiotics which previously were effective. Because current art does not give the physician a practical means in the office to determine if an antibiotic is indicated, or which one of the many old or new antibiotics would be effective, the physician usually makes an educated guess and simply picks one, hoping it will help. The patient becomes the test of effectiveness. More and more often today, a previously effective antibiotic is ineffective for patients. Alternatively, the physician can take blood or a specimen from the patient-urine, feces, throat swab, sputum, cerebrospinal fluid, or pus-and send it to the lab for culture and determination of sensitivity of any discovered pathogens to antibiotics. Or, the physician can send the patient to a lab collection center for collection of an appropriate specimen.
Currently, laboratories are highly automated. Automatic technology and expert personnel are very expensive, resulting in one central lab with many peripheral collection centers. Consequently, the actual lab is often far distant from the physician or patient, requiring considerable time for specimens to be transported. Consequently, blood and specimens are usually refrigerated until they are received and tests have begun. Usually, additives to blood such as anticoagulants, preservatives, etc. are used as well. The distance of the lab does not allow freshly drawn unadulterated whole blood and fresh specimens at body temperature, natural human conditions, to be used in culture and sensitivity testing.
Currently, in the lab the specimen, other than blood, is placed in a sterile culture medium, usually agar in a dish, to grow the pathogen(s) causing the disease. Suspicious colonies of pathogens are identified and reported to the physician who can then prescribe medications based on known past sensitivity of that type of microbe. The study may be taken further. Colonies may be isolated and inoculum transferred to a sterile agar dish and recultured, then this pure culture tested for sensitivity to specific antibiotics. Unfortunately, the steps necessary to get a pure culture require considerable extra time.
When blood is cultured, liquid growth media, or broth, is used to permit complete mixing of the blood and medium. But the liquid state imposes its own limitations. The blood is mixed throughout the medium and is not contained within a space where pathogen colonies are more readily identifiable. Also, with broth there is no firm surface, as provided by agar, to streak with the patient's specimen. Also, if the specimen is added to broth and blood, some microbes may grow, but pathogens that need air for growth may be inhibited, and thus cannot not be discovered unless special steps are taken to aerate the broth. Also, most commercially available liquid blood culture media contain anticoagulants to prevent blood from clotting and clumping. Consequently, even if whole blood without anticoagulant were delivered to the lab, the culture medium would alter the natural state, defeating the attempt to create a surrogate host without artificial additives. The process of the present invention is not disturbed by natural clotting.
Currently, pathogens that are grown from broth are identified, isolated, and transferred to receptacles where colonies of microbes may be manipulated under controlled conditions, including testing for antibiotic sensitivity. Many steps and much time, labor, and expertise are required. Therefore, this method is little used except for the most critically ill, usually hospitalized, patients.
Currently, the process of mixing a patient's whole unadulterated blood directly with culture medium, such as agar, and adding a specimen, for growth of pathogens and antibiotic sensitivity, is not used. There are a number of factors mitigating against direct addition of blood to culture medium. Agar is difficult to work with; it either hardens or liquefies because of temperature changes. If heating is necessary, many pathogens in the blood are killed and cannot be discovered later. To make a pour plate to test sensitivity to antibiotics, inoculum is added to agar at 45+° C., the lowest temperature agar is liquid. That temperature is unnatural to the human body, thus many pathogens that thrive at normal body temperature, 35-37° C., are killed. Fragile anaerobic pathogens and some viruses, die upon contact with air. Other fragile microbes die when stained on a slide. Thus, current art is unable to re
Barnes Allen C.
Barnes Janice S.
Hogan & Hartson L.L.P.
Tate Christopher
LandOfFree
Micropathological patient replica based on unadulterated... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Micropathological patient replica based on unadulterated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Micropathological patient replica based on unadulterated... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2453485