Chemistry: analytical and immunological testing – Biological cellular material tested
Reexamination Certificate
2000-08-17
2003-11-18
Wallenhorst, Maureen M. (Department: 1743)
Chemistry: analytical and immunological testing
Biological cellular material tested
C436S008000, C436S019000, C436S164000, C436S166000, C436S172000, C436S805000, C436S808000, C436S823000, C436S518000, C436S523000, C436S534000, C435S006120, C435S007100, C435S810000, C435S975000, C422S067000
Reexamination Certificate
active
06649414
ABSTRACT:
FIELD OF THE INVENTION
This invention generally relates to microparticles with unique characteristics detectable by instruments and methods for use in the measurement of analytes in fluids.
BACKGROUND OF THE INVENTION
Fluorescent polymeric particles have often found utility as markers and indicators in various biomedical assays. Fluorescent particles are usually obtained by embedding or diffusing a fluorescent dye according to the technique originally described by L. B. Bangs (Uniform Latex Particles; Seragen Diagnostics Inc. 1984, p. 40). Other methods are known in the art to stain particles with fluorescent dyes. The microparticles can then be analyzed manually or by other methods known in the art, but preferably using an automated technique, e.g., flow cytometry, such as disclosed in U.S. Pat. No. 4,665,024 issued to Mansour, et al.
The versatility of these particles can be enhanced by the incorporation in a single particle of a plurality of dyes, each dye having unique spectral characteristics. One skilled in the art would recognize that two or more dyes of varying proportions could be used to increase the permutation number of unique combinations of dyes on a single particle. While simple absorption of a single dye into a particle has proven adequate for most purposes, several problems arise when more than one dye is absorbed into a particle.
First, the close proximity of embedded dye molecules gives rise to significant amounts of fluorescent energy transfer. This energy transfer leads to fluorescent emissions that are inconsistent with relative dye concentrations and their original emission patterns.
A second problem arises when the dye substances used have differing solubilities in the solvent used to incorporate the dye in the particles. Since all dyes must be absorbed simultaneously, possible dye ratios are restricted by solvent properties.
A third problem that has been encountered when multiple dyes are embedded in microparticles is the change in dye spectra. Specifically, it has been noted that, when the particle is composed of crosslinked polystyrene, a significant broadening of the fluorescent emission peak occurs. This can result in an overlapping of the spectra of neighboring dyes.
One method that may circumvent these problems is to chemically couple each dye substance to the surface of the particle. This approach is, for example, disclosed in U.S. Pat. Nos. 5,194,300 Cheung and 4,774,189 Schwartz, whereby one or several fluorescent dyes are covalently bound to the surface of particles. This, however, leaves the dye molecule exposed to the environment, which can hasten decomposition by oxidation or other chemical attack. Additionally, a large number of surface binding sites would be occupied by dye and would be unavailable for the conjugation of analytical reactant molecules necessary to perform the assays.
Hence, it is desirable to have multicolored fluorescent particles, which avoid the above problems. This invention minimizes or eliminates these complications while maintaining the versatility of multi-dye particles.
Masson et al., disclose in U.S. Pat. No. 4,279,617, latex particles of relatively large diameter (e.g. 0.79 &mgr;m) coated with an analytical reactant, e.g., allergen, either by simple adsorption or by covalent coupling with cyanogen bromide or hydroxylated latex. A sample of human serum from a person suspected to have an allergic reaction, is mixed with a suspension of these particles. The mixture is incubated and latex particles of a relatively smaller diameter (e.g. 0.08 &mgr;m) are then added. These smaller particles are coated with rabbit anti-IgE antibodies and if larger particles have IgE bound to the allergen these small particles will bind to these antibodies and will form by virtue of agglomeration reaction so-called agglutination particles, i.e., large particles surrounded by several smaller particles. However, these particles are bound to each other via non-covalent binding and the agglomeration occurs as the consequence and result of the presence of the analyte of interest. No admission is made that any reference cited in this specification is prior art. All references cited herein are hereby expressly incorporated by reference.
SUMMARY OF THE INVENTION
This invention involves microparticles which are uniquely distinguished by detectable characteristics. In addition, the microparticles have bound to them reagents which react with analytes in samples to be analyzed in bimolecular reactions. The results of the reactions are bound to the microparticles and are measured, thereby allowing quantification of the amount of analyte in each sample. A variety of instruments are used to characterize the microparticles and simultaneously measure the bimolecular reactions. These include flow cytometry, electrophoresis cells, and centrifuges.
This invention provides significant advantages and efficiencies in the analysis of clinical and other samples from a single source for a number of analytes, and for analyzing a number of samples from a variety of sources for a single analyte. Any system or instrument capable of separating microparticles into subpopulations according to specified characteristics and of determining a chemical reaction using the same detection method as for the characteristics may be used with this invention. For example, flow cytometry using fluorescence detection is the embodiment described in greatest detail below. Other suitable systems include free flow electrophoresis and centrifugation, both of which may use detection means based on fluorescence, electrical charge, impedance, magnetic properties, etc.
Accordingly, this invention provides a novel article, which comprises a polymer microparticle having attached to its surface one or more populations or sets of fluorescently stained nanoparticles. All nanospheres in a given population are dyed with the same concentration of a dye, and by coupling a predetermined number of these nanospheres to the microparticle, along with known quantities of other nanospheres stained with different dyes, a multifluorescent microsphere results. By varying the quantity and ratio of different populations or sets of nanospheres it is possible to establish and distinguish a large number of discreet populations of carrier particles with unique emission spectra or fluorescence signal.
It is an object of the invention to provide a novel article, which comprises a microparticle carrying on its surface one or more populations of fluorescently stained nanoparticles. All nanospheres in a given population are dyed with the same concentration of a dye, and by coupling a known quantity of these nanospheres to the microparticle, along with known quantities of other nanospheres stained with different dyes, a multifluorescent microsphere results. By varying the quantity and ratio of different populations of nanospheres it is possible to establish and distinguish a large number of discreet populations of carrier particles with unique emission spectra. The carrier particles can be stained as well to provide an additional color or signal.
Although the article of the invention could appear as being similar to existing agglutination particles disclosed by Masson et al., and other similar prior art disclosures, they are patentably distinct from the instant invention, because means and the sequential order of particle-to-particle coupling are radically dissimilar. The purpose of the agglutination assay and means of the detection are also drastically different. Thus the prior art disclosures relating to particle agglutination methods and compositions are totally irrelevant and unrelated to the instant invention. The article of the instant invention requires that it is formed prior to the detection of an analyte of interest.
Polymeric microparticles used in this invention as carrier or core particles have a diameter of less than one millimeter, preferably having a size ranging from about 0.1 to about 1,000 micrometers (&mgr;m) in diameter. Even though the microparticle can be of any size, the preferred size is 1-100 &m
Chandler Don J.
Chandler Mark B.
Katten Muchin Zavis & Rosenman
Luminex Corporation
Seabold Robert R.
Villacorta Gilberto M.
Wallenhorst Maureen M.
LandOfFree
Microparticles with multiple fluorescent signals and methods... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Microparticles with multiple fluorescent signals and methods..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microparticles with multiple fluorescent signals and methods... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3123395