Chemistry: analytical and immunological testing – Involving an insoluble carrier for immobilizing immunochemicals – Carrier is particulate and the particles are of...
Reexamination Certificate
1999-01-22
2001-07-31
Horlick, Kenneth R. (Department: 1656)
Chemistry: analytical and immunological testing
Involving an insoluble carrier for immobilizing immunochemicals
Carrier is particulate and the particles are of...
C435S004000, C435S006120, C435S007100, C435S007200, C435S174000, C435S091500, C435S091500, C435S091500, C435S091500, C435S091500, C536S023100, C536S024300, C536S024320
Reexamination Certificate
active
06268222
ABSTRACT:
FIELD OF THE INVENTION
This invention generally relates to flow cytometry and more specifically to microparticles, which carry on their surface polymeric nanoparticles stained with one or more fluorescent dyes.
BACKGROUND OF THE INVENTION
Fluorescent polymeric particles have often found utility as markers and indicators in various biomedical assays. As used hereinafter the terms microparticles, microspheres, or microbeads are used interchangeably and bear equivalent meanings as they refer to small particles with overall diameter that falls essentially in the micrometer range. The terms nanospheres, nanoparticles, or nanobeads refer to smaller particles with overall size that falls essentially in the nanometer range. As used hereinafter the general term particles, spheres, or beads refers both to microparticles and nanoparticles, which effectively serve as solid supports or solid phase. Fluorescent particles are usually obtained by embedding or diffusing a fluorescent dye according to the technique originally described by L. B. Bangs (Uniform Latex Particles; Seragen Diagnostics Inc. 1984, p. 40). Other methods are known in the art to stain particles with fluorescent dyes. As used hereinafter the terms fluorescent dye, fluorescer, fluorochrome, or fluorophore are used interchangeably and bear equivalent meanings. The microparticles can be then analyzed manually or by other methods known in the art but preferably using an automated technique, e.g., flow cytometry, such as disclosed in U.S. Pat. No. 4,665,024 issued to Mansour, et al.
The versatility of these particles can be enhanced by the incorporation in a single particle a plurality of dyes, each dye having unique spectral characteristics. One skilled in the art would recognize that two or more dyes of varying proportions could be used to increase the permutation number of unique combinations of dyes on a single particle. While simple absorption of a single dye into a particle has proven adequate for most purposes, several problems arise when more than one dye is absorbed into a particle.
First, the close proximity of embedded dye molecules gives rise to significant amounts of fluorescent energy transfer. This energy transfer leads to fluorescent emissions that are inconsistent with relative dye concentrations and their original emission patterns.
Another problem arises when the dye substances used have differing solubilities in the solvent used to incorporate the dye in the particles. Since all dyes must be absorbed simultaneously, possible dye ratios are restricted by solvent properties.
A third problem that has been encountered when multiple dyes are embedded in microparticles is the change in dye spectra. Specifically, it has been noted that, when the particle is composed of crosslinked polystyrene, a significant broadening of the fluorescent emission peak occurs. This can result in an overlapping of the spectra of neighboring dyes.
One method that may circumvent these problems is to chemically couple each dye substance to the surface of the particle. This approach is for example disclosed in U.S. Pat. No. 5,194,300 Cheung; U.S. Pat. No. 4,774,189 Schwartz, whereby one or several fluorescent dyes are covalently bound to the surface of particles. This, however, leaves the dye molecule exposed to the environment, which can hasten decomposition by oxidation or other chemical attack. Additionally, a large number of surface binding sites would be occupied by dye and would be unavailable for the conjugation of analytical reactant molecules necessary to perform the assays.
Hence, it is desirable to have multicolored fluorescent particles, which avoid the above problems. This invention minimizes or eliminates these complications while maintaining the versatility of multi-dye particles.
Accordingly this invention provides a novel article, which comprises a polymer microparticle having attached to its surface one or more populations or sets of fluorescently stained nanoparticles. All nanospheres in a given population are dyed with the same concentration of a dye, and by coupling a predetermined number of these nanospheres to the microparticle, along with known quantities of other nanospheres stained with different dyes, a multifluorescent microsphere results. By varying the quantity and ratio of different populations or sets of nanospheres it is possible to establish and distinguish a large number of discreet populations of carrier particles with unique emission spectra or fluorescence signal.
Masson et al., disclose in the U.S. Pat. No. 4,279,617, latex particles of relatively large diameter (e.g. 0.79 &mgr;m) coated with an analytical reactant, e.g., allergen, either by simple adsorption or by covalent coupling with cyanogen bromide or hydroxylated latex. A sample of human serum, from a person suspected to have an allergic reaction, is mixed with a suspension of these particles. The mixture is incubated and latex particles of a relatively smaller diameter (e.g. 0.08 &mgr;m) are then added. These smaller particles are coated with rabbit anti-IgE antibodies and if larger particles have IgE bound to the allergen these small particles will bind to these antibodies and will form by virtue of agglomeration reaction so-called agglutination particles, i.e., large particles surrounded by several smaller particles. However, these particles are bound to each other via non-covalent binding and the agglomeration occurs as the consequence and result of the presence of the analyte of interest. In contrast, the article of the instant invention requires that it is formed prior to the detection of an analyte of interest.
Although the article of the invention could appear as being similar to existing agglutination particles disclosed by Masson et al., and other similar prior art disclosures, they are patentably distinct from the instant invention, because means and the sequential order of particle-to-particle coupling are radically dissimilar. The purpose of the agglutination assay and means of the detection are also drastically different. Thus the prior art disclosures relating to particle agglutination methods and compositions are totally irrelevant and unrelated to the instant invention.
No admission is made that any reference cited in this specification is prior art. All references are hereby incorporated by reference.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the invention to provide a novel article, which comprises a microparticle carrying on its surface one or more populations of fluorescently stained nanoparticles. All nanospheres in a given population are dyed with the same concentration of a dye, and by coupling a known quantity of these nanospheres to the microparticle, along with known quantities of other nanospheres stained with different dyes, a multifluorescent microsphere results. By varying the quantity and ratio of different populations of nanospheres it is possible to establish and distinguish a large number of discreet populations of carrier particles with unique emission spectra. The carrier particles can be stained as well to provide an additional color or signal.
Polymeric microparticles used in this invention as carrier or core particles have a diameter of less than one millimeter, preferably of size ranging from about 0.1 to 1,000 micrometers (&mgr;m) in diameter. Even though the microparticle can be of any size, the preferred size is 1-100 &mgr;m, more preferably 2-50 &mgr;m, more preferably 3-25 &mgr;m, and even more preferably about 6-12 &mgr;m.
Preferred sizes for nanoparticles range from about 1 nanometer (nm) to about 100,000 nm in diameter. Optimally preferred diameters are within about 10 and 1,000 nm, preferably within 100 and 800 nm, and more preferably within 200 and 500 nm.
It is a further object of the invention to provide nanospheres as well as carrier particles, which are preferably made of polymer material, i.e., polystyrene. However, polymeric materials including but not limited to brominated polystyrene, polyacrylic acid, polyacrylonitrile, polyamide, polyacrylamide, polyacrolein, polybuta
Chandler Don J.
Chandler Mark B.
Horlick Kenneth R.
Luminex Corporation
Pepper Hamilton LLP
Siew Jeffrey
Villacorta Gilberto M.
LandOfFree
Microparticles attached to nanoparticles labeled with... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Microparticles attached to nanoparticles labeled with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Microparticles attached to nanoparticles labeled with... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2458864