Micromechanical sensor and method for operating the sensor

Measuring and testing – Fluid pressure gauge – Diaphragm

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06357298

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a micromechanical sensor and to a method for operating a micromechanical sensor.
A micromechanical sensor of this type is for example disclosed in the form of a micromechanical silicon pressure sensor in the German Patent DE 44 18 207 C1. Such sensors essentially include a diaphragm which is clamped on all sides and bulges when there is a pressure difference between the two diaphragm surfaces. The signal conversion is performed for example using integrated monocrystalline or dielectrically isolated polycrystalline piezoresistors or through the use of capacitance measurements with respect to a fixed counterelectrode (piezoresistive or capacitive signal conversion). A customary requirement made of such sensors is that their properties should not change appreciably over the course of time. Particularly in the case of sensors relevant to safety, such as for example in active occupant protection devices in the motor vehicle sector (airbag), it is desirable that specific changes, which are to be noticed, in particular defects, be identified immediately and, in response, measures be taken to preclude inadvertent faulty reactions. A self-test that can be carried out directly for pressure sensors is not known at the present time. In indirect self-tests, it is possible to distinguish between passive and active self-tests. An active self-test can be performed through the use of a defined electrostatic deflection and a corresponding sampling of the resulting sensor signal. In this case, however, significant difficulties exist: firstly a counterelectrode is required for the electrostatic deflection of a silicon pressure sensor diaphragm. However, such a counterelectrode is not present in silicon pressure sensors fabricated through the use of bulk micromachining. In pressure sensors fabricated by surface micromachining (or more generally in the case of capacitively sampled pressure sensors), although there is a suitable counterelectrode, typically very high deflection voltages are nonetheless necessary (at least a few 10 V for a pressure range around approximately 1 bar). Such high deflection voltages are however not available on sensor modules having a typical operating voltage of approximately 5 V. A passive self-test of a pressure sensor with just one diaphragm can usually be effected only if the sensor is exposed to a precisely defined or known reference pressure. However, this is not normally the case, with the result that neither changes in the accuracy nor possible damage to the sensor can be identified with a passive self-test.
Published Non-Prosecuted European Patent Application EP 0 753 728 A2 discloses a differential semiconductor pressure sensor having two measuring diaphragms operating in opposite phases, which enables the static pressure error and temperature error to be eliminated by the detection of the different deflections of the two measuring diaphragms.
U.S. Pat. No. 5,022,270 discloses a transmitter with a pressure sensor and an additional pressure sensor, the additional pressure sensor being used to increase the measurement range or for redundancy purposes.
U.S. Pat. No. 5,431,057 discloses a pressure sensor with a multiplicity of individual sensors disposed on a matrix, the individual sensors being connected via connecting arms in order to increase the capacitance and thus obtain a higher output signal.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a micromechanical sensor, in particular a pressure sensor which overcomes the above-mentioned disadvantages of the heretofore-known sensors of this general type, which has a self-testing function, and which can be fabricated in a technically simple manner. Furthermore, the sensor should be suited for applications relevant to safety in the motor vehicle sector and should allow a self-testing which is sufficiently reliable but can be implemented in a simple manner. A further object of the invention is to provide a method for operating the sensor.
With the foregoing and other objects in view there is provided, in accordance with the invention, a micromechanical sensor, including:
a substrate;
an active element including at least two partial structures, the partial structures being exposed, during an operation, to a physical quantity to be measured and being one of functionally identical and structurally identical;
an electronic evaluation circuit coupled to the active element;
the partial structures supplying, during the operation, respective measurement signals to the electronic evaluation circuit;
the partial structures and the electronic evaluation circuit being integrated in the substrate; and
the electronic evaluation circuit having a comparison circuit for comparing the respective measurement signals and for generating a comparison signal such that the comparison signal is ZERO if, according to an ideal case, the partial structures are completely identical and are jointly exposed to the physical quantity.
In other words, the invention provides for the active element or acting element to include at least two partial structures which are exposed to the same physical quantity to be measured. Each partial structure supplies a measurement signal to the evaluation circuit. The evaluation circuit has a comparison circuit in which the at least two measurement signals are compared and which supplies a comparison signal as a result. An essential idea of the invention is that the active element of the sensor, that is to say the pickup or transducer, in particular a capacitive pickup, which normally supplies the useful signal, includes at least two partial structures whose supplied information items are averaged.
Partial damage can then be identified due to the fact that the signals of the two partial structures are compared with one another. If both partial structures are in order, the resultant comparison signal should produce a predetermined value, e.g. ideally zero in the case of a difference signal. Taking into account tolerance-dictated differences, or possible offset corrections, a test signal is produced which at most deviates slightly from the predetermined “zero value” but depends hardly at all on the physical input quantity (for example the pressure) to be measured. In the case of partial damage to the sensor, a signal is produced which deviates distinctly from the “zero value” and, when compared with the desired signal of the undamaged sensor, allows to identify a damage.
According to the invention, the at least two partial structures of the active element are configured to be functionally or structurally identical. Due to the identical construction and/or identical circuitry of the partial structures, it is ensured that the signals supplied by the partial structures of the active element are practically identical.
According to a preferred embodiment of the sensor, outputs of the two partial structures are coupled to inputs of a sigma-delta converter.
In accordance with another feature of the invention, the comparison circuit is configured as a subtractive comparison circuit and is further configured such that the comparison signal supplies an averaged value, in particular an addition value or a subtraction value, of the respective measurement signals.
In accordance with yet another feature of the invention, the electronic evaluation circuit is a digital evaluation circuit and the respective measurement signals are analog measurement signals. An A/D converter is connected downstream of the active element and converts the analog measurement signals to a digital signal which is processed by the digital evaluation circuit.
In accordance with a further feature of the invention, the partial structures are driven in phase or in opposite phase.
In accordance with another feature of the invention, the active element includes a diaphragm having two diaphragm surfaces and having sides. The diaphragm is clamped at the sides and bulges in response to a pressure difference between the two diaphragm surfaces.
The sensor acco

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Micromechanical sensor and method for operating the sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Micromechanical sensor and method for operating the sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Micromechanical sensor and method for operating the sensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2887360

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.